Top 20 AI Examples and Machine Learning Applications
The magical touch of mysterious science makes our life more comfortable and preferable than before. In our everyday life, the contribution of science is just undeniable. We can not overlook or ignore the effect of science in our life. Since, at present, we are habituated to the Internet in many steps of our day to day life, i.e., to go through an unknown route now we use a Google map, to express our thoughts or feelings use social networks, or to share our knowledge use blogs, to know the news we use online news portals and so on. If we try to understand the effect of science in our life precisely, then we will notice that actually, these are the outcome of using Artificial Intelligence and Machine Learning applications. In this article, we try to capture the splendid real-time applications of Machine Learning, which will make our perception of life more digital.
Best AI & Machine Learning Applications
Recently there has been a dramatic surge of interest in the era of Machine Learning, and more people become aware of the scope of new applications enabled by the Machine Learning approach. It builds a road-map to contact with the device and make the device understandable to response to our instructions and commands. However, the 20 best application of Machine Learning is listed here.
1. Image Recognition
Image Recognition is one of the most significant Machine Learning and artificial intelligence examples. Basically, it is an approach for identifying and detecting a feature or an object in the digital image. Moreover, this technique can be used for further analysis, such as pattern recognition, face detection, face recognition, optical character recognition, and many more.
Though several techniques are available, using a machine learning approach for image recognition is preferable. In a machine learning approach for image-recognition is involved extracting the key features from the image and therefore input these features to a machine learning model.
2. Sentiment Analysis
Sentiment analysis is another real-time machine learning application. It also refers to opinion mining, sentiment classification, etc. It’s a process of determining the attitude or opinion of the speaker or the writer. In other words, it’s the process of finding out the emotion from the text.
The main concern of sentiment analysis is “ what other people think?”. Assume that someone writes ‘the movie is not so good.’ To find out the actual thought or opinion from the text (is it good or bad) is the task of sentiment analysis. This sentiment analysis application can also apply to the further application such as in review based website, decision-making application.
The machine learning approach is a discipline that constructs a system by extracting the knowledge from data. Additionally, this approach can use big data to develop a system. In the machine learning approach, there are two types of learning algorithm supervised and unsupervised. Both of these can be used to sentiment analysis.
3. News Classification
News classification is another benchmark application of a machine learning approach. Why or How? As a matter of fact that now the volume of information has grown tremendously on the web. However, every person has his individual interest or choice. So, to pick or gather a piece of appropriate information becomes a challenge to the users from the ocean of this web.
Providing that interesting category of news to the target readers will surely increase the acceptability of news sites. Moreover, readers or users can search for specific news effectively and efficiently.
There are several methods of machine learning in this purpose, i.e., support vector machine, naive Bayes, k-nearest neighbor, etc. Moreover, there are several “news classification software” is available.
4. Video Surveillance
A small video file contains more information compared to text documents and other media files such as audio, images. For this reason, extracting useful information from video, i.e., the automated video surveillance system has become a hot research issue. With this regard, video surveillance is one of the advanced application of a machine learning approach.
The presence of a human in a different frame of a video is a common scenario. In the security-based application, identification of the human from the videos is an important issue. The face pattern is the most widely used parameter to recognize a person.
A system with the ability to gather information about the presence of the same person in a different frame of a video is highly demanding. There are several methods of machine learning algorithm to track the movement of human and identifying them.
5. Email Classification and Spam Filtering
To classify email and filter the spam in an automatic way machine learning algorithm is employed. There are many techniques, i.e., multi-layer perception, C4.5 decision tree induction, are used to filter the spam. The rule-based spam filtering has some drawbacks to filter the spam, whereas spam filtering using the ML approach is more efficient.
6. Speech Recognition
Speech recognition is the process of transforming spoken words into text. It is additionally called automatic speech recognition, computer speech recognition, or speech to text. This field is benefited from the advancement of machine learning approach and big data.
At present, all commercial purpose speech recognition system uses a machine learning approach to recognize the speech. Why? The speech recognition system using machine learning approach outperforms better than the speech recognition system using a traditional method.
Because, in a machine learning approach, the system is trained before it goes for the validation. Basically, the machine learning software of speech recognition works two learning phases: 1. Before the software purchase (train the software in an independent speaker domain) 2. After the user purchases the software (train the software in a speaker dependent domain).
This application can also be used for further analysis, i.e., health care domain, educational, and military.
7. Online Fraud Detection
Online fraud detection is an advanced application of machine learning algorithm. This approach is practical to provide cybersecurity to the users efficiently. Recently, PayPal is using a machine learning and artificial intelligence algorithm for money laundering. This advanced machine learning and artificial intelligence example helps to reduce the loss and maximize the profit. Using machine learning in this application, the detection system becomes robust than any other traditional rule-based system.
8. Classification
Classification or categorization is the process of classifying the objects or instances into a set of predefined classes. The use of machine learning approach makes a classifier system more dynamic. The goal of the ML approach is to build a concise model. This approach is to help to improve the efficiency of a classifier system.
Every instance in a data set used by the machine learning and artificial intelligence algorithm is represented using the same set of features. These instances may have a known label; this is called the supervised machine learning algorithm. In contrast, if the labels are known, then its called the unsupervised. These two variations of the machine learning approaches are used for classification problems.
9. Author Identification
With the rapid growth of the Internet, the illegal use of online messages for inappropriate or illegal purposes has become a major concern for society. For this regard, author identification is required.
Author identification also is known as authorship identification. The author identification system may use a variety of fields, such as criminal justice, academia, and anthropology. Additionally, organizations like Thorn use author identification to help end the circulation of child sexual abuse material on the web and bring justice to a child.
10. Prediction
Prediction is the process of saying something based on previous history. It can be weather prediction, traffic prediction, and may more. All sort of forecasts can be done using a machine learning approach. There are several methods like Hidden Markov model can be used for prediction.
11. Regression
Regression is another application of machine learning. There are several techniques for regression is available.
Suppose, X1, X2, X3 ,….Xn are the input variables, and Y is the output. During this case, using machine learning technology to provide the output (y) on the idea of the input variables (x). A model is used to precise the connection between numerous parameters as below:
Using machine learning approach in regression, the parameters can be optimized.
12. Services of Social Media
Social media is using the machine learning approach to create attractive and splendid features, i.e. people you may know, suggestion, react options for their users. These features are just an outcome of the machine learning technique.
Do you ever think of how they use the machine learning approach to engage you in your social account? For example, Facebook continuously notices your activities like with whom you chat, your likes, workplace, study place. And machine learning always acts based on experience. So, Facebook gives you a suggestion based on your activities.
13. Medical Services
Machine learning methods, tools are used extensively in the area of the medical-related problem. As an instance to detect a disease, therapy planning, medical-related research, prediction of the disease situation. Using machine learning-based software in the healthcare problem brings a breakthrough in our medical science.
14. Recommendation for Products and Services
Suppose that; we purchased several things from an online shop several days before. After a couple of days, you will notice that the related shopping websites or services are recommended for you.
Again, if you search something in google therefore after your searching, the similar type of things are recommended for you. This recommendation of products and services are the advance application of machine learning technique.
Several machine learning methods like supervised, semi-supervised, unsupervised, reinforcement are used to develop these products recommendation based system. This type of system also built with the incorporation of big data and machine learning technique.
15. Online Customer Supports
Recently almost all websites allow the customer to chat with the website representative. However, not website has an executive. Basically, they develop a chat-bot to chat with the customer to know their opinion. This is possible only for the machine learning approach. It’s just a beauty of machine learning algorithm.
16. Age/Gender Identification
The recently forensic related task has become a hot research issue in the world of research. Many researchers are working for bringing an effective and efficient system to develop an enriched system.
In this context, age or gender identification is an important task for many cases. Age or gender identification can be done using a machine learning and AI algorithm, i.e. using SVM classifier.
17. Language Identification
Language identification (Language Guessing) is the process of identifying the type of language. Apache OpenNLP, Apache Tika is the language identifying software. There are several approaches to identify the language. Among these, the machine learning and artificial intelligence approach is efficient.
18. Information Retrieval
The most significant machine learning and AI approach is information retrieval. It is the process of extracting the knowledge or structured data from the unstructured data. Since, now, the availability of information has been grown tremendously for web blogs, website, and social media.
Information retrieval plays a vital role in the big data sector. In a machine learning approach, a set of unstructured data is taken for input and therefore extracts the knowledge from the data.
19. Robot Control
A machine learning algorithm is used in a variety of robot control system. For instance, recently, several types of research have been working to gain control over stable helicopter flight and helicopter aerobatics.
In Darpa-sponsored competition, a robot driving for over one hundred miles within the desert was won by a robot that used machine learning to refine its ability to notice distant objects.
20. Virtual Personal Assistant
A virtual personal assistant is the advanced application of machine learning and artificial intelligence. In the machine learning technique, this system acts as follows: a machine-learning based system takes input, and processes the input and gives the resultant output. The machine learning approach is important as they act based on the experience.
Different virtual personal assistants are smart speakers of Amazon Echo and Google Home, Mobile Apps of Google Allo.
Finally
In this article, our expert team has curated a comprehensive list of machine learning and artificial intelligence examples in today’s life. The main difference between the traditional software and machine learning-based software is that the system is trained using a large volume of data. Also, it acts based on experience. So, the machine learning approach is effective than the traditional approach in problem-solving.
Leave a Reply