

Joos Korstanje

Machine	Learning	on	Geographical	Data
Using	Python
Introduction	into	Geodata	with	Applications
and	Use	Cases

Joos Korstanje
VIELS MAISONS, France

ISBN 978-1-4842-8286-1 e-ISBN 978-1-4842-8287-8
https://doi.org/10.1007/978-1-4842-8287-8

© Joos Korstanje 2022

Apress Standard

The use of general descriptive names, registered names, trademarks,
service marks, etc. in this publication does not imply, even in the
absence of a speci�ic statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general
use.

The publisher, the authors and the editors are safe to assume that the
advice and information in this book are believed to be true and
accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with
respect to the material contained herein or for any errors or omissions
that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional af�iliations.

This Apress imprint is published by the registered company APress
Media, LLC, part of Springer Nature.
The registered company address is: 1 New York Plaza, New York, NY
10004, U.S.A.

https://doi.org/10.1007/978-1-4842-8287-8

Introduction
Spatial data has long been an ignored data type in general data science
and statistics courses. Yet at the same time, there is a �ield of spatial
analysis which is strongly developed. Due to differences in tools and
approaches, the two �ields have long developed in separate
environments.

With the popularity of data in many business environments, the
importance of treating spatial data is also increasing. The goal of the
current book is to bridge the gap between data science and spatial
analysis by covering tools of both worlds and showing how to use tools
from both to answer use cases.

The book starts with a general introduction to geographical data,
including data storage formats, data types, common tools and libraries
in Python, and the like. Strong attention is paid to the speci�icities of
spatial data, including coordinate systems and more.

The second part of the book covers a number of methods of the
�ield of spatial analysis. All of this is done in Python. Even though
Python is not the most common tool in spatial analysis, the ecosystem
has taken large steps in user-friendliness and has great
interoperability with machine learning libraries. Python with its rich
ecosystem of libraries will be an important tool for spatial analysis in
the near future.

The third part of the book covers multiple machine learning use
cases on spatial data. In this part of the book, you see that tools from
spatial analysis are combined with tools from machine learning and
data science to realize more advanced use cases than would be
possible in many spatial analysis tools. Speci�ic considerations are
needed for applying machine learning to spatial data, due to the
speci�ic nature of coordinates and other speci�ic data formats of spatial
data.

Source	Code
All source code used in the book can be downloaded from
github.com/apress/machine-learning-geographic-
data-python.

Any source code or other supplementary material referenced by the
author in this book is available to readers on GitHub
(https://github.com/Apress). For more detailed information, please
visit http://www.apress.com/source-code.

Table	of	Contents
Part	I:	General	Introduction
Chapter	1:		Introduction	to	Geodata

Reading	Guide	for	This	Book
Geodata	De�initions

Cartesian	Coordinates
Polar	Coordinates	and	Degrees
The	Difference	with	Reality

Geographic	Information	Systems	and	Common	Tools
What	Are	Geographic	Information	Systems

Standard	Formats	of	Geodata
Shape�ile
Google	KML	File
GeoJSON
TIFF/	JPEG/	PNG
CSV/	TXT/	Excel

Overview	of	Python	Tools	for	Geodata
Key	Takeaways

Chapter	2:		Coordinate	Systems	and	Projections
Coordinate	Systems

Geographic	Coordinate	Systems
Projected	Coordinate	Systems
Local	Coordinate	Systems

Which	Coordinate	System	to	Choose
Playing	Around	with	Some	Maps

Example:		Working	with	Own	Data

Key	Takeaways
Chapter	3:		Geodata	Data	Types

Vector	vs.		Raster	Data
Dealing	with	Attributes	in	Vector	and	Raster

Points
De�inition	of	a	Point
Importing	an	Example	Point	Dataset	in	Python
Some	Basic	Operations	with	Points

Lines
De�inition	of	a	Line
An	Example	Line	Dataset	in	Python

Polygons
De�inition	of	a	Polygon
An	Example	Polygon	Dataset	in	Python
Some	Simple	Operations	with	Polygons

Rasters/	Grids
De�inition	of	a	Grid	or	Raster
Importing	a	Raster	Dataset	in	Python

Key	Takeaways
Chapter	4:		Creating	Maps

Mapping	Using	Geopandas	and	Matplotlib
Getting	a	Dataset	into	Python
Making	a	Basic	Plot
Plot	Title
Plot	Legend
Mapping	a	Point	Dataset	with	Geopandas	and	Matplotlib

Concluding	on	Mapping	with	Geopandas	and	Matplotlib
Making	a	Map	with	Cartopy

Concluding	on	Mapping	with	Cartopy
Making	a	Map	with	Plotly

Concluding	on	Mapping	with	Plotly
Making	a	Map	with	Folium

Concluding	on	Mapping	with	Folium
Key	Takeaways

Part	II:	GIS	Operations
Chapter	5:		Clipping	and	Intersecting

What	Is	Clipping?	
A	Schematic	Example	of	Clipping
What	Happens	in	Practice	When	Clipping?	
Clipping	in	Python

What	Is	Intersecting?	
What	Happens	in	Practice	When	Intersecting?	
Conceptual	Examples	of	Intersecting	Geodata

Intersecting	in	Python
Difference	Between	Clipping	and	Intersecting

Key	Takeaways
Chapter	6:		Buffers

What	Are	Buffers?	
A	Schematic	Example	of	Buffering
What	Happens	in	Practice	When	Buffering?	

Creating	Buffers	in	Python
Creating	Buffers	Around	Points	in	Python

Creating	Buffers	Around	Lines	in	Python
Creating	Buffers	Around	Polygons	in	Python

Combining	Buffers	and	Set	Operations
Key	Takeaways

Chapter	7:		Merge	and	Dissolve
The	Merge	Operation

What	Is	a	Merge?	
A	Schematic	Example	of	Merging

Merging	in	Python
Row-Wise	Merging	in	Python
Attribute	Join	in	Python
Spatial	Join	in	Python

The	Dissolve	Operation
What	Is	the	Dissolve	Operation?	
Schematic	Overview	of	the	Dissolve	Operation
The	Dissolve	Operation	in	Python

Key	Takeaways
Chapter	8:		Erase

The	Erase	Operation
Schematic	Overview	of	Spatially	Erasing	Points
Schematic	Overview	of	Spatially	Erasing	Lines
Schematic	Overview	of	Spatially	Erasing	Polygons

Erase	vs.		Other	Operations
Erase	vs.		Deleting	a	Feature
Erase	vs.		Clip
Erase	vs.		Overlay

Erasing	in	Python
Erasing	Portugal	from	Iberia	to	Obtain	Spain
Erasing	Points	in	Portugal	from	the	Dataset
Cutting	Lines	to	Be	Only	in	Spain

Key	Takeaways
Part	III:	Machine	Learning	and	Mathematics
Chapter	9:		Interpolation

What	Is	Interpolation?	
Different	Types	of	Interpolation

Linear	Interpolation
Polynomial	Interpolation
Nearest	Neighbor	Interpolation

From	One-Dimensional	to	Spatial	Interpolation
Spatial	Interpolation	in	Python

Linear	Interpolation	Using	Scipy	Interp2d
Kriging

Linear	Ordinary	Kriging
Gaussian	Ordinary	Kriging
Exponential	Ordinary	Kriging

Conclusion	on	Interpolation	Methods
Key	Takeaways

Chapter	10:		Classi�ication
Quick	Intro	to	Machine	Learning
Quick	Intro	to	Classi�ication
Spatial	Classi�ication	Use	Case

Feature	Engineering	with	Additional	Data

Importing	and	Inspecting	the	Data
Spatial	Operations	for	Feature	Engineering
Reorganizing	and	Standardizing	the	Data
Modeling
Model	Benchmarking

Key	Takeaways
Chapter	11:		Regression

Introduction	to	Regression
Spatial	Regression	Use	Case

Importing	and	Preparing	Data
Iteration	1	of	Data	Exploration
Iteration	1	of	the	Model
Iteration	2	of	Data	Exploration
Iteration	2	of	the	Model
Iteration	3	of	the	Model
Iteration	4	of	the	Model
Interpretation	of	Iteration	4	Model

Key	Takeaways
Chapter	12:		Clustering

Introduction	to	Unsupervised	Modeling
Introduction	to	Clustering
Different	Clustering	Models
Spatial	Clustering	Use	Case
Importing	and	Inspecting	the	Data
Cluster	Model	for	One	Person
Tuning	the	Clustering	Model

Applying	the	Model	to	All	Data
Key	Takeaways

Chapter	13:		Conclusion
What	You	Should	Remember	from	This	Book

Recap	of	Chapter	1	–	Introduction	to	Geodata
Recap	of	Chapter	2	–	Coordinate	Systems	and	Projections
Recap	of	Chapter	3	–	Geodata	Data	Types
Recap	of	Chapter	4	–	Creating	Maps
Recap	of	Chapter	5	–	Clipping	and	Intersecting
Recap	of	Chapter	6	–	Buffers
Recap	of	Chapter	7	–	Merge	and	Dissolve
Recap	of	Chapter	8	–	Erase
Recap	of	Chapter	9	–	Interpolation
Recap	of	Chapter	10	–	Classi�ication
Recap	of	Chapter	11	–	Regression
Recap	of	Chapter	12	–	Clustering

Further	Learning	Path
Going	into	Specialized	GIS
Specializing	in	Machine	Learning
Remote	Sensing	and	Image	Treatment
Other	Specialties

Key	Takeaways
Index

About	the	Author
Joos	Korstanje
is a data scientist, with over �ive years of
industry experience in developing
machine learning tools. He has a double
MSc in Applied Data Science and in
Environmental Science and has
extensive experience working with
geodata use cases. He has worked at a
number of large companies in the
Netherlands and France, developing
machine learning for a variety of tools.
His experience in writing and teaching
has motivated him to write this book on
machine learning for geodata with
Python.

About	the	Technical	Reviewer
Xiaochi	Liu
is a PhD researcher and data scientist at
Macquarie University, specializing in
machine learning, explainable arti�icial
intelligence, spatial analysis, and their
novel application in environmental and
public health. He is a programming
enthusiast using Python and R to
conduct end-to-end data analysis. His
current research applies cutting-edge AI
technologies to untangle the causal
nexus between trace metal
contamination and human health to
develop evidence-based intervention
strategies for mitigating environmental exposure.

Part	I
General	Introduction

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
J. Korstanje, Machine	Learning	on	Geographical	Data	Using	Python
https://doi.org/10.1007/978-1-4842-8287-8_1

1.	Introduction	to	Geodata
Joos Korstanje1

VIELS MAISONS, France

Mapmaking and analysis of the geographical environment around us
have been present in nature and human society for a long time. Human
maps are well known to all of us: they are a great way to share
information about our environment with others.

Yet communicating geographical instructions is not invented only by
the human species. Bees, for example, are well known to communicate on
food sources with their fellow hive mates. Bees do not make maps, but,
just like us, they use a clearly de�ined communication system.

As geodata is the topic of this book, I �ind it interesting to share this
out-of-the-box geodata system used by honeybees. Geodata in the bee
world has two components: distance and direction.

Honeybee	distance	metrics
– The round dance: A food source is present less than 50 meters from the

hive.
– The sickle dance: Food sources are present between 50 and 150 meters

from the hive.
– The waggle (a.k.a. wag-tail) dance: Food sources are over 150 meters

from the hive. In addition, the duration of the waggle dance is an
indicator of how far over 150 meters the source is located.
Honeybee	direction	metrics

– Although more complicated, the angle of the dance is known to be an
indicator of the angle relative to the sun that bees must follow to get to
their food source.

– As the sun changes location throughout the day, bees will update each
other by adapting their communication dances accordingly.

https://doi.org/10.1007/978-1-4842-8287-8_1

The human counterpart of geographical communication works a bit
better, as we have compasses that point to the magnetic north. Those of
you who are familiar with compass use, for example, on boats, may know
that even using a compass is not a perfect solution.

The magnetic north changes much less than the position of the sun.
What is interesting though is that the magnetic north and the true north
are not located at the same exact place. The true north is a �ixed location
on the globe (the so-called North Pole), but compasses are based on
magnetism and therefore point to the magnetic north: a location that
moves a little bit every year.

If you are navigating a ship with a compass, you will constantly need
to do calculations that convert your magnetic direction measurements
into true direction measurements by adding magnetic variation, which is
a value that changes depending on where you are on earth.

Reading	Guide	for	This	Book
As you will understand from these two examples, working with geodata is
a challenge. While identifying locations of points by coordinates may
appear simple, the devil really is in the details.

The goal of this book is to go over all those details while working on
example code projects in Python. This should give you the fundamental
knowledge needed to start working in the interesting domain of geodata
while avoiding mistakes. You will then discover numerous ways to
represent geodata and learn to work with tools that make working with
geodata easier.

After laying the basis, the book will become more and more advanced
by focusing on machine learning techniques for the geodata domain. As
you may expect, the speci�icities of the use of geodata make that a lot of
standards techniques are not applicable at all, or in other cases, they may
need speci�ic adaptations and con�igurations.

Geodata	De�initions
To get started, I want to cover the basics of coordinate systems in the
simplest mathematic situation: the Euclidean space. Although the world
does not respect the hypothesis made by Euclidean geometry, it is a great
entry into the deeper understanding of coordinate systems.

A two-dimensional Euclidean space is often depicted as shown in
Figure 1-1.

Figure	1-1 A two-dimensional Euclidean space. Image by author

Cartesian	Coordinates
To locate points in the Euclidean space, we can use the Cartesian
coordinate system. This coordinate system speci�ies each point uniquely
by a pair of numerical coordinates. For example, look at the coordinate
system in Figure 1-2, in which two points are located: a square and a
triangle.

The square is located at x = 2 and y = 1 (horizontal axis). The triangle
is located at x = -2 and y = -1.

Figure	1-2 Two points in a coordinate system. Image by author

The point where the x and y axes meet is called the Origin, and
distances are measured from there. Cartesian coordinates are among the
most well-known coordinate system and work easily and intuitively in
the Euclidean space.

Polar	Coordinates	and	Degrees
A commonly used alternative to Cartesian coordinates is the polar
coordinate system. In the polar system, one starts by de�ining one point
as the pole. From this pole starts the polar axis. The graphic in Figure 1-3
shows the idea.

Figure	1-3 The polar system. Image by author

In this schematic drawing, the star is designated as the pole, and the
thick black line to the right is chosen as the polar axis. This system is
quite different from the Cartesian system but still allows us to identify
the exact same points: just in a different way.

The points are identi�ied by two components: an angle with respect to
the polar axis and a distance. The square that used to be referred to as
Cartesian coordinate (2,1) can be referred to by an angle from the polar
axis and a distance.

This is shown in Figure 1-4.

Figure	1-4 A point in the polar coordinate system. Image by author

At this point, you can measure the distance and the angle and obtain
the coordinate in the polar system. Judged by the eye alone, we could say
that the angle is probably more or less 30° and the distance is slightly
above 2. We would need to have more precise measurement tools and a
more precise drawing for more precision.

There are trigonometric computations that we can use to convert
between polar and Cartesian coordinates. The �irst set of formulas allows
you to go from polar to Cartesian:

The letter r signi�ies the distance and the letter φ is the angle. You can go
the other way as well, using the following formulas:

As a last part to cover about degrees, I want to mention the equivalence
between measuring angles in degrees and in radians. The radian system
may seem scary if you are not used to it, but just remember that for every

possible angle that you can measure (from 0 to 360) there is a
corresponding notation in the radian system. Figure 1-5 shows this.

Figure	1-5 Radians vs. degrees. Image by author

The	Difference	with	Reality
In reality, you never work with Euclidean space on a map. This is because
the world is not �lat, but rather a sort of sphere. First of all, it needs to be
considered that the object is in three dimensions. More importantly,
distances from one point to another need to take into account the
speci�ic curvature of the earth at that point. After all, to make it even
more dif�icult, the earth unfortunately is not a perfectly round ball.

In the real world, things have to be much more complicated than in
the Euclidean examples. This is done by the Geographic Coordinate
System which is adapted to our ellipsoidal reality. In this system, we
usually measure a point by a combination of latitude and longitude.

Latitude indicates how high or low on the globe you are with respect
to the equator. Longitude tells us how much left or right on the globe you
are with respect to the Greenwich meridian.

The earth is split into four quadrants from the zero point at the
intersection of the equator and the Greenwich meridian. You have north
and south and east and west together making up four quadrants. The
North Pole has a latitude of 90 degrees North, and the South Pole is 90

degrees South. Longitude ranges from 180 degrees West to 180 degrees
East.

Degrees do not have decimals, but rather can be cut up into minutes.
One degree consists of 60 minutes, and one minute consists of 60
seconds.

Geographic	Information	Systems	and	Common
Tools
As you must understand by now, geodata is an easy way into a headache
if you do not have tools that do all the conversion work for you. And we
are lucky, as many such tools exist. In this part, let’s have a look at a few of
the most commonly used tools together with some advantages and
disadvantages of each of them.

What	Are	Geographic	Information	Systems
GIS or Geographic Information Systems are a special type of database
system that is made speci�ically for geographic data, also called geodata.
Those database systems are developed in such a way that problems like
coordinate systems and more are not a problem to be solved by the user.
It is all done inherently by the system. GIS also stands for the industry
that deals with those information systems.

ArcGIS
ArcGIS, made by ESRI, is arguably the most famous software package for
working with Geographic Information Systems. It has a very large
number of functionalities that can be accessed through a user-friendly
click-button system, but visual programming of geodata processing
pipelines is also allowed. Python integration is even possible for those
who have speci�ic tasks for which there are no preexisting tools in ArcGIS.
Among its tools are also AI and data science options.

ArcGIS is a great software for working with geodata. Yet there is one
big disadvantage, and that is that it is a paid, proprietary software. It is
therefore accessible only to companies or individuals that have no
dif�iculty paying the considerably high price. Even though it may be
worth its price, you’ll need to be able to pay or convince your company to
pay for such software. Unfortunately, this is often not the case.

QGIS	and	Other	Open	Source	ArcGIS	Alternatives
Open source developers have jumped into this open niche of GIS systems
by developing open source (and therefore free to use) alternatives. These
include QGIS, GRASS GIS, PostGIS, and more.

The clear advantage of this is that they are free to use. Yet their
functionality is often much more limited. In most of them, users have the
ability to code their own modules in case some of the needed tools are
not available.

This approach can be a good �it for your need if you are not afraid to
commit to a system like QGIS and �ill the gaps that you may eventually
encounter.

Python/R	Programming
Finally, you can use Python or R programming for working with geodata
as well. Programming, especially in Python or R, is a very common skill
among data professionals nowadays.

As programming skills were less well spread a few years back, the
boom in data science, machine learning, and arti�icial intelligence has
made languages like Python become very commonly spread throughout
the workforce.

Now that many are able to code or have access to courses to learn
how to code, the need for full software becomes less. The availability of a
number of well-functioning geodata packages is enough for many to get
started.

Python or R programming is a great tool for treating geodata with
common or more modern methods. By using these programming
languages, you can easily apply tools from other libraries to your geodata,
without having to convert this to QGIS modules, for example.

The only problem that is not very well solved by programming
languages is long-term geodata storage. For this, you will need a
database. Cloud-based databases are nowadays relatively easy to arrange
and manage, and this problem is therefore relatively easily solved.

Standard	Formats	of	Geodata
As you have understood, there are different tools and programming
languages that can easily deal with geodata. While doing geodata in

Python in this book, we will be generally interested much more in data
processing than in data storage.

Yet a full solution for geodata treatment cannot rely on treatment
alone. We also need a data format. You will now see a number of common
data formats that are used very widely for storing geographical data.

Shape�ile
The shape�ile is a very commonly used �ile format for geodata because it
is the standard format for ArcGIS. The shape�ile is not very friendly for
being used outside of ArcGIS, but due to the popularity of ArcGIS, you will
likely encounter shape�iles at some point.

The shape�ile is not really a single �ile. It is actually a collection of �iles
that are stored together in one and the same directory, all having the
same name. You have the following �iles that make up a shape�ile:
– my�ile.shp: The main �ile, also called the shape�ile (confusing but true)
– my�ile.shx: The shape�ile index �ile
– my�ile.dbf: The shape�ile data �ile that stores attribute data
– my�ile.prj: Optional �ile that stores spatial reference and projection

metadata
As an example, let’s look at an open data dataset containing the

municipalities of the Paris region that is provided by the French
government. This dataset is freely available at
https://geo.data.gouv.fr/en/datasets/8fadd7040c4b94f
2c318a0971e8faedb7b5675d6

On this website, you can download the data in SHP/L93 format, and
this will allow you to download a directory with a zip �ile. Figure 1-6
shows what this contains.

Figure	1-6 The inside of the shape�ile. Image by author Data source: Ministry of DINSIC. Original
data downloaded from
https://geo.data.gouv.fr/en/datasets/8fadd7040c4b94f2c318a0971e8faedb7b5675d6, updated on 1
July 2016. Open Licence 2.0 (www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf)

https://geo.data.gouv.fr/en/datasets/8fadd7040c4b94f2c318a0971e8faedb7b5675d6
https://geo.data.gouv.fr/en/datasets/8fadd7040c4b94f2c318a0971e8faedb7b5675d6
https://www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf

As you can see, there are the .shp �ile (the main �ile), the .shx �ile (the
index �ile), the .dbf �ile containing the attributes, and �inally the optional
.prj �ile.

For this exercise, if you want to follow along, you can use your local
environment or a Google Colab Notebook at
https://colab.research.google.com/.

You have to make sure that in your environment, you install
geopandas:

!pip install geopandas

Then, make sure that in your environment you have a directory called
Communes_MGP.shp in which you have the four �iles:
– Communes_MGP.shp
– Communes_MGP.dbf
– Communes_MGP.prj
– Communes_MGP.shx

In a local environment, you need to put the “sample_data” �ile in the
same directory as the notebook, but when you are working on Colab, you
will need to upload the whole folder to your working environment, by
clicking the folder icon and then dragging and dropping the whole folder
onto there. You can then execute the Python code in Code Block 1-1 to
have a peek inside the data.

import geopandas as gpd
shapefile =
gpd.read_file("sample_data/Communes_MGP.shp")
print(shapefile)

Code	Block	1-1 Importing the shape�ile

You’ll see the result in Figure 1-7.

https://colab.research.google.com/

Figure	1-7 The data in Python. Image by author Data source: Ministry of DINSIC. Original data
downloaded from
https://geo.data.gouv.fr/en/datasets/8fadd7040c4b94f2c318a0971e8faedb7b5675d6, updated on 1
July 2016. Open Licence 2.0 (www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf)

To make something more visual, you can use the code in Code Block 1-
2.

shapefile.plot()

Code	Block	1-2 Plotting the shape�ile

You will obtain the map corresponding to this dataset as in Figure 1-8.

https://geo.data.gouv.fr/en/datasets/8fadd7040c4b94f2c318a0971e8faedb7b5675d6
https://www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf

Figure	1-8 The map resulting from Code Block 1-2. Image by author Data source: Ministry of
DINSIC. Original data downloaded from
https://geo.data.gouv.fr/en/datasets/8fadd7040c4b94f2c318a0971e8faedb7b5675d6, updated on 1
July 2016. Open Licence 2.0 (www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf)

Google	KML	File
You are probably familiar with Google Earth: one of the dominating map-
based applications of our time. Google has popularized the KML �ile for
geodata. It is an XML-based text �ile that can contain geometry data.

The .KMZ �ile is a compressed version of the KML �ile. You can
decompress it using any unzipping tool and obtain a KML �ile.

As an example, let’s look at the exact same database as before, which
is located at France’s open geodata platform:

Ministry of DINSIC. Original data downloaded from
https://geo.data.gouv.fr/en/datasets/8fadd7040c4b94f
2c318a0971e8faedb7b5675d6, updated on 1 July 2016. Open Licence
2.0 (www.etalab.gouv.fr/wp-
content/uploads/2018/11/open-licence.pdf)

In the resources part, you’ll see that this map of the Paris region’s
municipalities is also available in the KML format. Download it and you’ll

https://geo.data.gouv.fr/en/datasets/8fadd7040c4b94f2c318a0971e8faedb7b5675d6
https://www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf
https://geo.data.gouv.fr/en/datasets/8fadd7040c4b94f2c318a0971e8faedb7b5675d6
https://www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf

obtain a �ile called Communes_MGP.kml.
If you try opening the �ile with a text editor, you’ll �ind that it is an XML

�ile (very summarized, XML is a data storage pattern that can be
recognized by many < and > signs).

Compared to the shape�ile, you can see that KML is much easier to
understand and to parse. A part of the �ile contents is shown in Figure 1-
9.

Figure	1-9 The KML �ile content. Image by author Data source: Ministry of DINSIC. Original data
downloaded from
https://geo.data.gouv.fr/en/datasets/8fadd7040c4b94f2c318a0971e8faedb7b5675d6, updated on 1
July 2016. Open Licence 2.0 (www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf)

To get a KML �ile into Python, we can again use geopandas. This time,
however, it is a bit less straightforward. You’ll also need the Fiona
package to obtain a KML driver. The total code is shown in Code Block 1-
3.

import fiona
gpd.io.file.fiona.drvsupport.supported_drivers['KML']
= 'rw'

import geopandas as gpd
kmlfile = gpd.read_file("Communes_MGP.kml")
print(kmlfile)

Code	Block	1-3 Importing the KML �ile

You’ll then see the exact same geodataframe as before, which is
shown in Figure 1-10.

Figure	1-10 The KML data shown in Python. Image by author Data source: Ministry of DINSIC.
Original data downloaded from
https://geo.data.gouv.fr/en/datasets/8fadd7040c4b94f2c318a0971e8faedb7b5675d6, updated on 1
July 2016. Open Licence 2.0 (www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf)

https://geo.data.gouv.fr/en/datasets/8fadd7040c4b94f2c318a0971e8faedb7b5675d6
https://www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf
https://geo.data.gouv.fr/en/datasets/8fadd7040c4b94f2c318a0971e8faedb7b5675d6
https://www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf

As before, you can plot this geodataframe to obtain a basic map
containing the municipalities of the area of Paris and around. This is
done in Code Block 1-4.

kmlfile.plot()

Code	Block	1-4 Plotting the KML �ile data

The result is shown in Figure 1-11.

Figure	1-11 The plot resulting from Code Block 1-4. Screenshot by author Data source: Ministry of
DINSIC. Original data downloaded from
https://geo.data.gouv.fr/en/datasets/8fadd7040c4b94f2c318a0971e8faedb7b5675d6, updated on 1
July 2016. Open Licence 2.0 (www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf)

An interesting point here is that the coordinates do not correspond
with the map that was generated from the shape�ile. If you’ve read the
�irst part of this chapter, you may have a hinge on how this is caused by
coordinate systems. We’ll get into this in much more detail in Chapter 2.

GeoJSON

https://geo.data.gouv.fr/en/datasets/8fadd7040c4b94f2c318a0971e8faedb7b5675d6
https://www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf

The json format is a data format that is well known and loved by
developers. Json is much used in communication between different
information systems, for example, in website and Internet
communication.

The json format is loved because it is very easy to parse, and this
makes it a perfect storage for open source and other developer-oriented
tools.

Json is a key-value dataset, which is much like the dictionary in
Python. The whole is surrounded by accolades. As an example, I could
write myself as a json object as in this example:

{ 'first_name': 'joos',
 'last_name': 'korstanje',
 'job': 'data scientist' }

As you can see, this is a very �lexible format, and it is very easy to
adapt to all kinds of circumstances. You might easily add GPS coordinates
like this:

{ 'first_name': 'joos',
 'last_name': 'korstanje',
 'job': 'data scientist',
 'latitude': '48.8566° N',
 'longitude': '2.3522° E' }

GeoJSON is a json-based format that de�ines a speci�ic, standardized
way to deal with storing coordinates (not just points but also lines and
polygons) in the json format.

The Paris municipalities map that you’ve downloaded before is also
available in the geojson format. Download it over here (click GeoJSON in
the Resources part):

https://geo.data.gouv.fr/en/datasets/8fadd7040c4b
94f2c318a0971e8faedb7b5675d6

You will obtain a �ile called Communes_MGP.json. When opening it
with notepad or any other text editor, you’ll see that it is a json format
(shown in Figure 1-12). Of course, it is the exact same data: only the
storage format changes.

https://geo.data.gouv.fr/en/datasets/8fadd7040c4b94f2c318a0971e8faedb7b5675d6

Figure	1-12 The content in json format. Image by author Data source: Ministry of DINSIC. Original
data downloaded from
https://geo.data.gouv.fr/en/datasets/8fadd7040c4b94f2c318a0971e8faedb7b5675d6, updated on 1
July 2016. Open Licence 2.0 (www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf)

You can get a GeoJSON �ile easily into the geopandas library using the
code in Code Block 1-5.

import geopandas as gpd
geojsonfile = gpd.read_file("Communes_MGP.json")
print(geojsonfile)

Code	Block	1-5 Importing the geojson

As expected, the data looks exactly like before (Figure 1-13). This is
because it is transformed into a geodataframe, and therefore the original
representation as json is not maintained anymore.

https://geo.data.gouv.fr/en/datasets/8fadd7040c4b94f2c318a0971e8faedb7b5675d6
https://www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf

Figure	1-13 The geojson content in Python. Image by author Data source: Ministry of DINSIC.
Original data downloaded from
https://geo.data.gouv.fr/en/datasets/8fadd7040c4b94f2c318a0971e8faedb7b5675d6, updated on 1
July 2016. Open Licence 2.0 (www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf)

You can make the plot of this geodataframe to obtain a map, using the
code in Code Block 1-6.

geojsonfile.plot()

Code	Block	1-6 Plotting the geojson data

The resulting plot is shown in Figure 1-14.

https://geo.data.gouv.fr/en/datasets/8fadd7040c4b94f2c318a0971e8faedb7b5675d6
https://www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf

Figure	1-14 The plot resulting from Code Block 1-6. Image by author Data source: Ministry of
DINSIC. Original data downloaded from
https://geo.data.gouv.fr/en/datasets/8fadd7040c4b94f2c318a0971e8faedb7b5675d6, updated on 1
July 2016. Open Licence 2.0 (www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf)

TIFF/JPEG/PNG
Image �ile types can also be used to store geodata. After all, many maps
are 2D images that lend themselves well to be stored as an image. Some
of the standard formats to store images are TIFF, JPEG, and PNG.
– The TIFF format is an uncompressed image. A georeferenced TIFF

image is called a GeoTIFF, and it consists of a directory with a TIFF �ile
and a tfw (world �ile).

– The better-known JPEG �ile type stores compressed image data. When
storing a JPEG in the same folder as a JPW (world �ile), it becomes a
GeoJPEG.

– The PNG format is another well-known image �ile format. You can make
this �ile into a GeoJPEG as well when using it together with a PWG
(world �ile).
Image �ile types are generally used to store raster data. For now,

consider that raster data is image-like (one value per pixel), whereas

https://geo.data.gouv.fr/en/datasets/8fadd7040c4b94f2c318a0971e8faedb7b5675d6
https://www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf

vector data contains objects like lines, points, and polygons. We’ll get to
the differences between raster and vector data in a next chapter.

On the following website, you can download a GeoTIFF �ile that
contains an interpolated terrain model of Kerbernez in France:

https://geo.data.gouv.fr/en/datasets/b0a420b9e003
d45aaf0670446f0d600df14430cb

You can use the code in Code Block 1-7 to read and show the raster �ile
in Python.

pip install rasterio
import rasterio
from rasterio.plot import show
fp = r'ore-kbz-mnt-litto3d-5m.tif'
img = rasterio.open(fp)
show(img)

Code	Block	1-7 Read and show the raster data

Note Depending on your OS, you may obtain a .tiff �ile format rather
than a .tif when downloading the data. In this case, you can simply
change the path to become .tiff, and the result should be the same. In
both cases, you will obtain the image shown in Figure 1-15.

https://geo.data.gouv.fr/en/datasets/b0a420b9e003d45aaf0670446f0d600df14430cb

Figure	1-15 The plot resulting from Code Block 1-7. Image by author Data source: Ministry of
DINSIC. Original data downloaded from
https://geo.data.gouv.fr/en/datasets/b0a420b9e003d45aaf0670446f0d600df14430cb, updated on
“unknown.” Open Licence 2.0 (www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf)

It is interesting to look at the coordinates and observe that this �ile’s
coordinate values are relatively close to the �irst �ile.

CSV/TXT/Excel
The same �ile as used in the �irst three examples is also available in CSV.
When downloading it and opening it with a text viewer, you will observe
something like Figure 1-16.

https://geo.data.gouv.fr/en/datasets/b0a420b9e003d45aaf0670446f0d600df14430cb
https://www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf

Figure	1-16 The contents of the CSV �ile. Image by author Data source: Ministry of DINSIC. Original
data downloaded from
https://geo.data.gouv.fr/en/datasets/b0a420b9e003d45aaf0670446f0d600df14430cb, updated on
“unknown.” Open Licence 2.0 (www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf)

The important thing to take away from this part of the chapter is that
geodata is “just data,” but with geographic references. These can be
stored in different formats or in different coordinate systems to make
things complicated, but in the end you must simply make sure that you
have some sort of understanding of what you have in your data.

You can use many different tools for working with geodata. The goal of
those tools is generally to make your life easier. As a last step for this
introduction, let’s have a short introduction to the different Python tools
that you may encounter on your geodata journey.

https://geo.data.gouv.fr/en/datasets/b0a420b9e003d45aaf0670446f0d600df14430cb
https://www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf

Overview	of	Python	Tools	for	Geodata
Here is a list of Python packages that you may want to look into on your
journey into geodata with Python:

Geopandas
General GIS tool with a pandas-like code syntax that makes it very
accessible for the data science world.

Fiona
Reading and writing geospatial data.

Rasterio
Python package for reading and writing raster data.

GDAL/OGR
A Python package that can be used for translating between different GIS
�ile formats.

RSGISLIB
A package containing remote sensing tools together with raster
processing and analysis.

PyProj
A package that can transform coordinates with multiple geographic
reference systems.

Geopy
Find postal addresses using coordinates or the inverse.

Shapely
Manipulation of planar geometric objects.

PySAL
Spatial analysis package in Python.

Scipy.spatial
Spatial algorithms based on the famous scipy package for data science.

Cartopy
Package for drawing maps.

GeoViews
Package for interactive maps.

A small reminder: As Python is an open source environment and those
libraries are mainly developed and maintained by unpaid open source
developers, there is always that chance that something changes or
becomes unavailable. This is the risk of working with open source. In
most cases, there are no such big problems, but they can and do
sometimes happen.

Key	Takeaways
1.

Cartesian coordinates and polar coordinates are two alternative
coordinate systems that can indicate points in a two-dimensional
Euclidean space.

2.
The world is an ellipsoid, which makes the two-dimensional
Euclidean space a bad representation. Other coordinate systems
exist for this real-world scenario.

3.
Geodata is data that contains geospatial references. Geodata can
come in many different shapes and sizes. As long as you have
software implementation (or the skills to build it), you will be able to
convert between data formats.

4.
A number of Python packages exist that do a lot of the heavy lifting
for you.

5.

The advantage of using Python is that you can have a lot of autonomy
on your geodata treatment and that you can bene�it from the large
number of geodata and other data science and AI packages in the
ecosystem.

6. A potential disadvantage of Python is that the software is open
source, meaning that you have no guarantee that your preferred
libraries still exist in the future. Python is also not suitable for long-
term data storage and needs to be complemented with such a data
storage solution (e g databases or �ile storage)

storage solution (e.g., databases or �ile storage).

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
J. Korstanje, Machine	Learning	on	Geographical	Data	Using	Python
https://doi.org/10.1007/978-1-4842-8287-8_2

2.	Coordinate	Systems	and	Projections
Joos Korstanje1

VIELS MAISONS, France

In the previous chapter, you have seen an introduction to coordinate
systems. You saw an example of how you can use Cartesian coordinates
as well as polar coordinates to identify points on a �lat, two-dimensional
Euclidean space. It was already mentioned at that point that the real-
world scenario is much more complex.

When you are making maps, you are showing things (objects, images,
etc.) that are located on earth. Earth does not respect the rules that were
shown in the Euclidean example because Earth is an ellipsoid: a ball form
that is not perfectly round. This makes map and coordinate system
calculations much more complex than what high-school mathematics
teaches us about coordinates.

To make the problem clearer, let’s look at an example of airplane
navigation. Airplane �lights are a great example to illustrate the problem,
as they generally cover long distances. Taking into account the curvature
of the earth really doesn’t matter much when measuring the size of your
terrace, but it does make a big impact when moving across continents.

Imagine you are �lying from Paris to New York using this basic sketch
of the world’s geography. You are probably well aware of such an
organization of the world’s map on a two-dimensional image.

A logical �irst impression would be that to go from Madrid to New
York in the quickest way, we should follow a line parallel from the latitude
lines. Yet (maybe surprisingly at �irst) this is not the shortest path. An
airplane would better curve via the north!

The reason for this is that the more you move to the north, the
shorter the latitude lines actually are. Latitude lines go around the earth,
so at the North Pole you have a length of zero, and at the equator, the

https://doi.org/10.1007/978-1-4842-8287-8_2

middle line is the longest possible. The closer to the poles, the shorter the
distance to go around the earth.

As this example takes place in the northern hemisphere, the closest
pole is the North Pole. By curving north on the northern hemisphere
(toward the pole), an airplane can get to its destination with fewer
kilometers. Figure 2-1 illustrates this.

Figure	2-1 Airplane routes are not straight on a mapImage adapted from
https://en.wikipedia.org/wiki/World_map#/media/File:Blue_Marble_2002.png (Public Domain
Image. 10 February 2002)

Let’s now consider an example where you are holding a round soccer
ball. When going from one point to another on a ball, you will intuitively
be able to say which path is the fastest. If you are looking straight at the
ball, when following your �inger going from one point to another, you will
see your hand making a shape like in Figure 2-2.

https://en.wikipedia.org/wiki/World_map%2523/media/File:Blue_Marble_2002.png

Figure	2-2 The shortest path on a ball is not a straight line in two-dimensional view. Image by
author

When making maps, we cannot plot in three dimensions, and we,
therefore, need to �ind some way or another to put a three-dimensional
path onto a two-dimensional image.

Many map makers have proposed all sorts of ways to solve this
unsolvable problem, and the goal of this chapter is to help you
understand how to deal effectively with those 3D to 2D mapping
distortions that will be continuously looking to complexify your work on
geodata.

Coordinate	Systems
While the former discussion was merely intuitive, it is now time to slowly
get to more of�icial de�initions of the concepts that you have seen. As we
are ignoring the height of a point (e.g., with respect to sea level) for the
moment, we can identify three types of coordinate systems:
– Geographic Coordinate Systems
– Projected Coordinate Systems
– Local Coordinate Systems

Let’s go over all three of them.

Geographic	Coordinate	Systems
Geographic Coordinate Systems are the coordinate systems that we have
been talking about in the previous part. They respect the fact that the
world is an ellipsoid, and they, therefore, express points using degrees or
radians latitude and longitude.

As they respect the ellipsoid property of the earth, it is very hard to
make maps or plots with such coordinate systems.

Latitude	and	Longitude
In Geographic Coordinate Systems, we speak of latitude and longitude.
Generally, the degrees are either expressed together with a mention of
North (above the equator) and South (below the equator), East (east
from Greenwich meridian), or West (west from Greenwich meridian).
East/West and North/South can also be written as negative and positive
coordinates. East and North take positive, whereas South and West take
negative.

Although this is standard practice, this can change depending on the
exact de�inition of the Geographic Coordinate System you are using. In
theory, anyone could invent a new coordinate system and make it totally
different. In practice, there are some standards that everyone is used to,
and therefore it is best to use those.

WGS	1984	Geographic	Coordinate	System
The WGS 1984, also called WGS 84 or EPSG:4326, is one of the most used
Geographic Coordinate Systems. It is also the reference coordinate
system of GPS (Global Positioning System) which is used in very many
applications. Let’s dive into how the WGS 84 was designed.

The WGS 1984 was designed with the goal to have a coordinate origin
located at the center of mass of the Earth. The reference meridian or zero
meridian is the IERS Reference Meridian. It is very close to the Greenwich
meridian: only 5.3 arc seconds or 102 meters to the east.

There are more speci�ic de�initions that de�ine the WGS 84, yet at this
point, the information becomes very technical. To quote from the
Wikipedia page of the WGS 84:

The	WGS	84	datum	surface	is	an	oblate	spheroid	with	equatorial
radius	a	=	6378137	m	at	the	equator	and	�lattening	f	=
1/298.257223563.	The	re�ined	value	of	the	WGS	84	gravitational

constant	(mass	of	Earth's	atmosphere	included)	is	GM	=
3986004.418×108	m3/s2.	The	angular	velocity	of	the	Earth	is
de�ined	to	be	ω	=	72.92115×10−6	rad/s.

You are absolutely not required to memorize any of those details. I do
hope that it gives you an insight into how detailed a de�inition of
Geographic Coordinate Systems has to be. This explains how it is
possible that other people and organizations have identi�ied alternate
de�initions. This is why there are many coordinate systems out there and
also one of the reasons why working with geospatial data can be hard to
grasp in the beginning.

Other	Geographic	Coordinate	Systems
As an example, ETRS89 is a coordinate system that is recommended by
the European Union for use in geodata in Europe. It is very close to the
WGS 84 but has some minor differences that make the ETRS89 not
subject to change due to continental drift. As you will understand,
continental drift is very slow, and taking things like this into account is
partly based on theory rather than practical importance.

Another example is the NAD-83 system, which is used mainly for
North America. As the Earth is an imperfect ellipsoid, the makers of this
system wanted to take into account how much North America deviates
from an ellipsoid to perform better in North America.

Projected	Coordinate	Systems
When making maps, we need to convert the three-dimensional earth into
two-dimensional form. This task is impossible to do perfectly: imagining
taking a round plastic soccer ball and cutting it open to make it �lat. You
will never be able to paste this round ball into a �lat rectangle without
going through an immense struggle to �ind a way to cut the stuff so that it
looks more or less coherent.

Luckily, many great minds have come before us to take this challenge
and �ind great ways to “cut up the ellipsoid earth and paste it on a
rectangle.” We call this projecting, as you could imagine that the 3D
geographic coordinates get matched with a location on the square. This
projects everything in between to its corresponding location.

X	and	Y	Coordinates

When working with Projected Coordinate Systems, we do not talk about
latitude and longitude anymore. As latitude and longitude are relevant
only for measurements on the globe (ellipsoid), but on a �lat surface, we
can drop this complexity. Once the three-dimensional lat/long
coordinates have been converted to the coordinates of their projection,
we simply talk about x and y coordinates.

X is generally the distance to the east starting from the origin and y
the distance to the north starting from the origin. The location of the
origin depends on the projection that you are using. The measurement
unit also changes from one Projected Coordinate System to another.

Four	Types	of	Projected	Coordinate	Systems
As you have understood, there will be a distortion in all Projected
Coordinate Systems. As the projections place locations on a three-
dimensional ball-like form onto a �lat two-dimensional rectangle, some
features of reality can be maintained as others get lost.

There is no projection better than the other. The question here is
rather which types of features you want to maintain and you are
accepting to lose. There are four categories of Projected Coordinate
Systems, all making sure that one aspect of reality is perfectly maintained
on the projection.

When choosing a map projection for your project, the key choice is to
decide which distortions will be the most appropriate and which features
you absolutely want to maintain.

Equal	Area	Projections
The �irst type of projection is one that preserves the area of speci�ic
features. You may not be aware of it, but many maps that you see do not
respect equal area. As an example, if you zoom out a bit on Google Maps,
you will see that Greenland is huge in the projection that was chosen by
Google Maps.

For some use cases, this can be a big problem. Equal area projections
are there to make sure that the surface area of speci�ic features stays the
same (e.g., countries or others). The cost of this is that other features like
shapes and angles may become distorted. You may end up with a
projection in which Greenland respects its real area, but the shape is not
perfectly represented as a result.

Example	1:	Mollweide	Projection

The Mollweide projection is an example of an equal area projection. It is
also known as the Babinet projection, the homolographic projection, and
the elliptical projection. The world looks like Figure 2-3 when projected
using Mollweide.

Figure	2-3 The world seen in a Mollweide projectionSource:
https://commons.wikimedia.org/wiki/File:Mollweide-projection.jpg. Public Domain

Example	2:	Albers	Equal	Area	Conic
The Albers equal area conic projection takes a very different approach, as
it is conic. Making conic maps is often done to make some zones better
represented. The Albers equal area conic projection, also called the Albert
projection, projects the world to a two-dimensional map while respecting
areas as shown in Figure 2-4.

https://commons.wikimedia.org/wiki/File:Mollweide-projection.jpg

Figure	2-4 The world seen in an Albers equal area conic projection Source:
https://commons.wikimedia.org/wiki/File:World_borders_albers.png. Public Domain

Conformal	Projections
If shapes are important for your use case, you may want to use a
conformal projection. Conformal projections are designed to preserve
shapes. At the cost of distorting the areas on your map, this category of
projections guarantees that all of the angles are preserved, and this
makes sure that you see the “real” shapes on the map.

Mercator
The Mercator map is very well known, and it is the standard map
projection for many projects. Its advantage is that it has north on top and
south on the bottom while preserving local directions and shapes.

Unfortunately, locations far away from the equator are strongly
in�lated, for example, Greenland and Antarctica, while zones on the
equator look too small in comparison (e.g., Africa).

The map looks like shown in Figure 2-5.

https://commons.wikimedia.org/wiki/File:World_borders_albers.png

Figure	2-5 The world seen in a Mercator projection Source:
https://commons.wikimedia.org/wiki/File:Mercator_projection_of_world_with_grid.png. Public
Domain

Lambert	Conformal	Conic
The Lambert conformal conic projection is another conformal projection,
meaning that it also respects local shapes. This projection is less
widespread because it is a conic map, and conic maps have never become
as popular as rectangles. However, it does just as well on plotting the
earth while preserving shapes, and it has fewer problems with size
distortion. It looks as shown in Figure 2-6.

https://commons.wikimedia.org/wiki/File:Mercator_projection_of_world_with_grid.png

Figure	2-6 The world seen in a Lambert conformal conic projection Source:
https://commons.wikimedia.org/wiki/File:Lambert_conformal_conical_projection_of_world_with_gr
id.png. Public Domain

Equidistant	Projections
As the name indicates, you should use equidistant projections if you want
a map that respects distances. In the two previously discussed projection
types, there is no guarantee that distance between two points is
respected. As you can imagine, this will be a problem for many use cases.
Equidistant projections are there to save you if distances are key to your
solution.

Azimuthal	Equidistant	Projection
One example of an equidistant projection is the azimuthal equidistant
projection, also called Postel or zenithal equidistant. It preserves
distances from the center and looks as shown in Figure 2-7.

https://commons.wikimedia.org/wiki/File:Lambert_conformal_conical_projection_of_world_with_grid.png

Figure	2-7 The world seen in an azimuthal equidistant projection Source:
https://commons.wikimedia.org/wiki/File:Azimuthal_equidistant_projection_of_world_with_grid.pn
g. Public Domain

Equidistant	Conic	Projection
The equidistant conic projection is another conic projection, but this
time it preserves distance. It is also known as the simple conic projection,
and it looks as shown in Figure 2-8.

https://commons.wikimedia.org/wiki/File:Azimuthal_equidistant_projection_of_world_with_grid.png

Figure	2-8 The world seen in an equidistant conic projection Source:
https://commons.wikimedia.org/wiki/File:Equidistant_conical_projection_of_world_with_grid.png.
Public Domain

True	Direction	or	Azimuthal	Projections
Finally, azimuthal projections are designed to respect directions from
one point to another. If, for example, you are making maps for navigation,
azimuthal maps that respect directions may be essential. The direction of
any point on the map will be guaranteed to be depicted in the right
direction from the center.

An interesting additional advantage of this category is that they can
be combined with the previous three types of maps, so they are not an
either/or choice.

Lambert	Equal	Area	Azimuthal
One example of an azimuthal projection is the Lambert equal area
azimuthal. As the name indicates, it is not just azimuthal but also equal
area. The world according to this projection looks as shown in Figure 2-9.

https://commons.wikimedia.org/wiki/File:Equidistant_conical_projection_of_world_with_grid.png

Figure	2-9 The world seen in a Lambert equal area azimuthal projection Source:
https://commons.wikimedia.org/wiki/File:Lambert_azimuthal_equal-
area_projection_of_world_with_grid.png. Public Domain

Two-Point	Equidistant	Projection
Another azimuthal projection is the two-point equidistant projection,
also called doubly equidistant projection. When making maps using this
projection, one must choose two points on the map, and distances from
those two points to any other point on the map are guaranteed to be at
the same distance as the scale of the map. As an example, you can see in

https://commons.wikimedia.org/wiki/File:Lambert_azimuthal_equal-area_projection_of_world_with_grid.png

Figure 2-10 the two-point equidistant projection of Eurasia with two
points from which all distances are respected. It is also azimuthal.

Figure	2-10 The world seen in a two-point equidistant projection Source:
https://commons.wikimedia.org/wiki/File:World_borders_donald.png. Public Domain

Local	Coordinate	Systems
As you have seen, there are a number of Geographic Coordinate Systems,
followed by an even larger number of map projections that each have
their own speci�ic mathematical de�initions and are each created for a
speci�ic use case or practical and theoretical goals. What they have in

https://commons.wikimedia.org/wiki/File:World_borders_donald.png

common, however, is that they are generally made to function on the
whole world.

A third type of coordinate systems is the Local Coordinate System.
Local Coordinate Systems are, as you would expect, only suited for local
maps and use cases. They are designed to function well on a smaller
geographical zone. They often have an origin that is at a location that is
logical for the zone but would not be logical for any other map. Therefore,
they have coordinates only for the local zone and may be chosen such
that the local, close-up maps depict the zone with as little distortion as
possible.

We won’t go further into this for now, as the limited use of most of
those Local Coordinate Systems makes it hard to pick out interesting
cases. Yet it is important to know that they exist, as you may encounter
them, and you may even want to look up some Local Coordinate Systems
for your personal area.

Which	Coordinate	System	to	Choose
After seeing this large variety and detail of coordinate systems, you may
wonder which coordinate systems you should use. And, unfortunately,
there is not one clear answer to this. Only if you have very clear needs,
whether it is equal distances, equal shapes, or equal areas, there will be a
very clear winner. Conic vs. cylindrical maps may also be a clear element
of choice in this.

Another part of the answer is that you will very often be “forced” into
working with a speci�ic coordinate system, as you retrieve geodata
datasets that are already in a chosen coordinate system. You can always
go from one to the other, but if your dataset is large, conversions may
take some time and pose problems: staying with a dataset’s coordinate
system can be the right choice if you have no speci�ic needs.

Besides that, it can be a best practice to use “standard” choices. If all
maps in your domain of application or in your region use a speci�ic
coordinate system, you may as well go with that choice for increased
coherence.

One key takeaway here is that metadata is a crucial part of geodata.
Sending datasets with coordinates while failing to mention details on the
coordinate system used is very problematic. At the same time, if you are
on the receiving end, stay critical of the data you receive, and pay close

attention to whether or not you are on the right coordinate system.
Mistakes are easily made and can be very impactful.

Playing	Around	with	Some	Maps
To end this chapter on coordinate systems, let’s get to some practical
applications. You will see how to create some data, change coordinate
systems, and show some simple maps in those different coordinate
systems. You will see a �irst example in which you create your own
dataset using Google My Maps. You will project your data into another
coordinate system and compare the differences.

Example:	Working	with	Own	Data
In the �irst example, you will learn an easy and accessible method for
annotating geodata using Google My Maps. You will then import the map
in Python and see how to convert it to a different coordinate system.

Step	1:	Make	Your	Own	Dataset	on	Google	My	Maps
Google My Maps is a great starting point for building simple geodatasets.
Although it is not much used in professional use cases, it is a great way to
get started or to make some quick sketches for smaller projects.

To start building a Google My Maps, you need to go to your Google
Drive (drive.google.com). Inside your Google Drive, you click New, and
you select New Google My Map. Once you do this, it will automatically
open a Google Maps–like page in which you have some additional tools.
You will see the toolbars top left.

Step	2:	Add	Some	Features	on	Your	Map
You can add features on your map by clicking the icon for points and

the icon for lines and polygons. Let’s try to make a polygon that
contains the whole country of France, by clicking around its borders. You
should end up with a gray polygon. For copyright reasons, it is not
possible to reprint the map in Google format, but you can freely access it
over here:

www.google.com/maps/d/edit?
mid=1phChS9aNUukXKk2MwOQyXvksRk-HTOdZ&usp=sharing

https://www.google.com/maps/d/edit%253Fmid%253D1phChS9aNUukXKk2MwOQyXvksRk-HTOdZ%2526usp%253Dsharing

Step	3:	Export	Your	Map	As	a	.KML
By doing this, you have just created a very simple geodata dataset that
contains one polygon. Now, to get this geodata into a different
environment, let’s export the data.

To do so, you go to the three little dots to the right of the name of your
map, and you click Export Map, or Download KML, depending on your
version and settings. You can then select to extract only	the	layer	rather
than	the	entire	map. This way, you will end up with a dataset that has
your own polygon in it. Also, select the option to get	a	.KML	rather	than
a	.KMZ.

Step	4:	Import	the	.KML	in	Python
Now, let’s see how we can get this map into Python. You can use the
geopandas library together with the Fiona library to easily import a .KML
map. If you don’t have these libraries installed, you can use Code Block 2-
1 if you’re in a Jupyter notebook.

!pip install fiona
!pip install geopandas

Code	Block	2-1 Installing the libraries

Then you can use the code in Code Block 2-2 to import your map and
show the data that is contained within it.

import fiona
import geopandas as gpd

gpd.io.file.fiona.drvsupport.supported_drivers['KML']
= 'rw'
kmlfile =
gpd.read_file(“the/path/to/the/exported/file.kml")
print(kmlfile)

Code	Block	2-2 Importing the data

You’ll �ind that there is just one line in this dataframe and that it
contains a polygon called France. Figure 2-11 shows this.

Figure	2-11 The contents of the dataframe. Image by author

We can inspect that polygon in more detail by extracting it from the
dataframe using the code in Code Block 2-3.

print(kmlfile.loc[0,'geometry'])

Code	Block	2-3 Extracting the geometry from the dataframe

You will see that the data of this polygon is a sequence of coordinates
indicating the contours. This looks like Code Block 2-4.

POLYGON Z ((2.4444624 51.288264 0, -5.3778032
48.3696347 0, -1.0711626 46.315323 0, -2.0599321
43.3398321 0, 2.5103804 42.2434336 0, 7.7178999
43.7697753 0, 8.135380400000001 48.8924149 0,
2.4444624 51.288264 0))

Code	Block	2-4 The resulting geometry, output of Code Block 2-3

Step	5:	Plot	the	Map
Now that you understand how to de�ine polygon-shaped map data as a
text �ile, let’s use simple Python functionality to make this into a map.
This can be done very easily by using the plot method, as shown in Code
Block 2-5.

import matplotlib.pyplot as plt
kmlfile.plot()
plt.title('Map in WGS 84')

Code	Block	2-5 Plotting the map

The result of this code is shown in Figure 2-12.

Figure	2-12 The map resulting from Code Block 2-5. Image by author

You will obtain a map of the polygon. You should recognize the exact
shape of the polygon, as it was de�ined in your map or in the example
map, depending on which one you used.

Step	6:	Change	the	Coordinate	System
KML standardly uses the WGS 84 Geographic Coordinate System. You can
check that this is the case using the code in Code Block 2-6.

kmlfile.crs

Code	Block	2-6 Extracting the coordinate system

You’ll see the result like in Figure 2-13 being shown in your notebook.

Figure	2-13 The result of Code Block 2-6. Image by author

It may be interesting to see what happens when we plot the map into
a very different coordinate system. Let’s try to convert this map into a
different coordinate system using the geopandas library. Let’s change
from the geographic WGS 84 into the projected Europe Lambert
conformal conic map projection, which is also known as ESRI:102014.

The code in Code Block 2-7 makes the transformation from the source
coordinate system to the target coordinate system.

proj_kml = kmlfile.to_crs('ESRI:102014')
proj_kml

Code	Block	2-7 Changing the coordinate system

The result is shown in Figure 2-14.

Figure	2-14 The resulting dataframe from Code Block 2-7. Image by author

Step	7:	Plot	the	Map	Again
Now to plot the polygon, the code in Code Block 2-8 will do the job.

proj_kml.plot()
plt.title('ESRI:102014 map')

Code	Block	2-8 Plotting the map

The result is shown in Figure 2-15.

Figure	2-15 The plot resulting from Code Block 2-8. Image by author

The coordinate systems have very different x and y values. To see
differences in shape and size, you will have to look very closely. You can
observe a slight difference in the way the angle on the left is made. The
pointy bit on the left is pointing more toward the bottom in the left map,
whereas it is pointing a bit more to the top in the right map. This is
shown in Figure 2-16.

Figure	2-16 Showing the two coordinate systems side by side. Image by author

Although differences here are small, they can have a serious effect on
your application. It is important to understand here that none of the
maps are “wrong.” They just use a different mathematical formula for
projecting a 3D curved piece of land onto a 2D image.

Key	Takeaways
1.

Coordinate systems are mathematical descriptions of the earth that
allow us to communicate about locations precisely

2.

Many coordinate systems exist, and each has its own advantages and
imperfections. One must choose a coordinate system depending on
their use case.

3.
Geographic Coordinate Systems use degrees and try to model the
Earth as an ellipsoid or sphere.

4.

Projected Coordinate Systems propose methods to convert the 3D
reality onto a 2D map. This goes as the cost of some features of
reality, which cannot be presented perfectly in 2D.

5. There are a number of well-known projection categories. Equidistant
makes sure that distances are not disturbed. Equal area projections

make sure that areas are respected. Conformal projections maintain
shape. Azimuthal projections keep directions the same.

6.

Local Coordinate Systems are interesting for very speci�ic local
studies or use cases, as they generally specify an origin and
projection that makes sense on a local scale.

7.
You have seen how to annotate a geospatial dataset by hand using the
easy-to-use and intuitive Google My Maps. You can export the map
into a .KML format which can be easily imported into Python.

8.
You have seen how to import maps in Python using geopandas, and
you have seen how to convert a geospatial dataset from one
coordinate system to another. You have learned that the amount of
difference will depend on the amount of difference between the
different coordinate systems that you are using.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
J. Korstanje, Machine	Learning	on	Geographical	Data	Using	Python
https://doi.org/10.1007/978-1-4842-8287-8_3

3.	Geodata	Data	Types
Joos Korstanje1

VIELS MAISONS, France

Throughout the previous chapters, you have been (secretly) exposed to a number
of different geodata data types. In Chapter 1, we have talked about identifying
points inside a coordinate system. In the previous chapter, you saw how a polygon
of the shape of the country France was created. You have also seen examples of a
TIFF data �ile being imported into Python.

Understanding geodata data types is key in working ef�iciently with geodata.
In regular, tabular, datasets, it is generally not too costly to transform from one
data type to another. Also, it is generally quite easy to say which data type is the
“best” data type for a given variable or a given data point.

In geodata, the choice of data types is much more impacting. Transforming
polygons of the shapes of countries into points is not a trivial task, as this would
require de�ining (arti�icially) where you’d want to put each point. This would be in
the “middle,” which would often require quite costly computations.

The other way around, however, would not be possible anymore. Once you
have a point dataset with the centers of countries, you would never be able to �ind
the countries’ exact boundaries anymore.

This problem is illustrated using the two images in Figures 3-1 and 3-2. You
see one that has a map with the contours of the countries of the world, which has
some black crosses indicating some of the countries’ center points. In the second
example, you see the same map, but with the polygons deleted. You can see clearly
that once the polygon information is lost, you cannot go back to this information.
This may be acceptable for some use cases, but it may be a problem for many use
cases.

In this chapter, you will see the four main types of geodata data types, so that
you will be comfortable working with all types, and you will be able to decide on
the type of data to use.

https://doi.org/10.1007/978-1-4842-8287-8_3

Figure	3-1 Putting center points in polygons is possible Image adapted from geopandas (BSD 3 Clause License)

Figure	3-2 Going from points back to polygons is not possible Image by author

Vector	vs.	Raster	Data
The big split in geodata data types is between vector data and raster data. There
is a fundamental difference in how those two are organized.

Vector data is data that contains objects with the speci�ic coordinates of those
objects. Those objects are points, lines, and polygons. In the two images

introduced earlier, you have seen vector data. The �irst dataset is a polygon
dataset that contains the spatial location data of those polygons in a given
coordinate system. The second map shows a point dataset: it contains points and
their coordinates.

A raster dataset works differently. Raster data is like a digital image. Just like
images, a raster dataset is split into a huge number of very small squares: these
are pixels. For every pixel, a value is stored.

You see that the big difference between vector and raster data is that vector
data stores only objects with their coordinates. The rest of the map is effectively
empty and that is not a problem in vector data. In the real world, this is how many
objects work. If you think about a transportation dataset containing motorways
and railroads, you can understand that most of the earth is not covered in them. It
is much more ef�icient to just state where the objects are located (vector
approach) than to state for each pixel on the world whether or not there is a road
present (raster approach).

Raster data must have a value in every pixel, making it particularly useful for
representing real-world phenomena that are not limited to a particular space. One
good example is an elevation map: every location on earth has a speci�ic height.
By cutting the world into pixels, you could assign the height of each location (wrt
sea level). This would give you a great map for relief mapping. Other continuous
use cases exist like mapping temperature over the earth, mapping pollution
values, and much more.

Dealing	with	Attributes	in	Vector	and	Raster
Coordinates are generally not the only thing that you want to know about your
polygons or your raster. If you are collecting geodata, you are generally interested
to know more about your locations than just where they are. Additional
information is stored in what we call the attributes of your dataset.

As there is a fundamental difference in working with vector and raster data, it
is interesting to understand how one would generally solve such data storage.

In the case of vector data, you will generally see a table that contains one row
for each object (point, line, or polygon). In the columns of the table, you will see an
ID and the geographic information containing the shape and coordinates. You can
easily imagine adding to this any column of your choice with additional
information about this object, like a name, or any other data that you may have
about it: population size of the country, date of creation, and the list goes on.
Figure 3-3 shows an example of this.

Figure	3-3 Vector data example. Image by author

For raster data, the storage is generally image-like. As explained before, each
pixel has a value. It is therefore common to store the data as a two-dimensional
table in which each row represents a row of pixels, and each column represents a
column of pixels. The values in your data table represent the values of one and
only one variable. Working with raster data can be a bit harder to get into, as this
image-like data format is not very accommodating to adding additional data.
Figure 3-4 shows an example of this.

Figure	3-4 Raster data. Image by author

We will now get to an in-depth description of each of the data types that you
are likely to encounter, and you will see how to work with them in Python.

Points
The simplest data type is probably the point. You have seen some examples of
point data throughout the earlier chapters, and you have seen before that the
point is one of the subtypes of vector data.

Points are part of vector data, as each point is an object on the map that has its
own coordinates and that can have any number of attributes necessary. Point
datasets are great for identifying locations of speci�ic landmarks or other types of
locations. Points cannot store anything like the shape of the size of landmarks, so
it is important that you use points only if you do not need such information.

De�inition	of	a	Point
In mathematics, a point is generally said to be an exact location that has no length,
width, or thickness. This is an interesting and important concept to understand
about point data, as in geodata, the same is true.

A point consists only of one exact location, indicated by one coordinate pair
(be it x and y, or latitude and longitude). Coordinates are numerical values,
meaning that they can take an in�inite number of decimals. The number 2.0, for
example, is different than 2.1. Yet 2.01 is also different, 2.001 is a different
location again, and 2.0001 is another, different, location.

Even if two points are very close to each other, it would theoretically not be
correct that they are touching each other: as long as they are not in the same
location, there will always be a small distance in between the points.

Another consideration is that if you have a point object, you cannot tell
anything about its size. Although you could make points larger and smaller on the
map, your point still stays at size 0. It is really just a location.

Importing	an	Example	Point	Dataset	in	Python
Let’s start to work with a real-world point dataset in Python. For this data
example, you’ll use the 2018 Central Park Squirrel Census, an open dataset of the
City of New York. It contains coordinates of squirrel sightings in the famous
Central Park in New York. Each row of the dataset is a squirrel with its coordinates
and a date and time of the sighting.

You can download the data from here:
https://data.cityofnewyork.us/Environment/2018-Central-
Park-Squirrel-Census-Squirrel-Data/vfnx-vebw. If you click View
data and then Export, you can download the �ile as a KML �ile, which you have
already seen how to import in Python.

Before going into Python, it will be interesting to look at the text �ile through a
text editor. If you open the KML �ile through a text editor, you’ll see many blocks of
data, each containing one squirrel sighting. You can use an XML formatter (just
type XML formatter on Google for a free online one) and copy-paste a data block
in it to make it more readable. You’ll obtain something like Figure 3-5.

https://data.cityofnewyork.us/Environment/2018-Central-Park-Squirrel-Census-Squirrel-Data/vfnx-vebw

Figure	3-5 A screenshot of the content of the data. Image by author Data source: NYC OpenData. 2018 Central
Park Squirrel Census

Of course, this is an extract, and the real list of variables about the squirrels is
much longer. What is interesting to see is how the KML data format has stored
point data just by having coordinates with it. Python (or any other geodata tool)
will recognize the format and will be able to automatically import this the right
way.

To import the data into Python, we can use the same code that was used in the
previous chapter. It uses Fiona and geopandas to import the KML �ile into a

geopandas dataframe. The code is shown in Code Block 3-1.

import fiona
import geopandas as gpd

gpd.io.file.fiona.drvsupport.supported_drivers['KML'] =
'rw'
kmlfile = gpd.read_file("2018 Central Park Squirrel Census
- Squirrel Data.kml")
print(kmlfile)

Code	Block	3-1 Importing the Squirrel data

You will see the dataframe, containing geometry, being printed as shown in
Figure 3-6.

Figure	3-6 Capture of the Squirrel data. Image by author Data source: NYC OpenData. 2018 Central Park
Squirrel Census

You can clearly see that each line is noted as follows: POINT	(coordinate
coordinate). The coordinate system should be located in the geodataframe’s
attributes, and you can look at it using the code in Code Block 3-2.

kmlfile.crs

Code	Block	3-2 Inspecting the coordinate system

You’ll see the info about the coordinate system being printed, as shown in
Figure 3-7.

Figure	3-7 The output from Code Block 3-2. Image by author Data source: NYC OpenData. 2018 Central Park
Squirrel Census

You can plot the map to see the squirrel sightings on the map using the code in
Code Block 3-3. It is not very pretty for now, but additional visualization
techniques will be discussed in Chapter 4. For now, let’s focus on the data formats
using Code Block 3-3.

import matplotlib.pyplot as plt
kmlfile.plot()
plt.title('Squirrels in Central Park (WGS84)')

Code	Block	3-3 Plotting the data

You’ll obtain the graph shown in Figure 3-8.

Figure	3-8 Map of squirrel sightings in Central Park. Image by author Data source: NYC OpenData. 2018 Central
Park Squirrel Census

Some	Basic	Operations	with	Points
Let’s try to execute some simple operations with this point dataset. This is a real-
world dataset, so it will come with real-world issues. Let’s get into it and see how
to get to some results.

Filter	Morning	vs.	Afternoon
As a study, let’s try to do a �ilter to make one map for the morning observations
and one for the afternoon observations. This may tell us whether there are any
signi�icant squirrel movements throughout the day.

If we look at the dataframe that was imported, you’ll see that the Extended
Variables part of our KML �ile was unfortunately not recognized by geopandas.
Let’s inspect the columns using the code in Code Block 3-4.

kmlfile.columns

Code	Block	3-4 Inspecting the columns

You’ll see that only the data shown in Figure 3-9 has been successfully
imported.

Figure	3-9 The output from Code Block 3-4. Image by author

Now, this would be a great setback with any noncode geodata program, but as
we are using Python, we have the full autonomy of �inding a way to repair this
problem. I am not saying that it is great that we have to parse the XML ourselves,
but at least we are not blocked at this point.

XML parsing can be done using the xml library. XML is a tree-based data
format, and using the xml element tree, you can loop through the different levels
of the tree and go down in distance. Code Block 3-5 shows how to do this.

import xml.etree.ElementTree as ET
tree = ET.parse("2018 Central Park Squirrel Census –
Squirrel Data.kml")
root = tree.getroot()

loop through the xml to parse it data point by data
point
df = []
for datapoint_i in range(1,3023):
 elementdata = root[0][1][datapoint_i][1]
 df_row = []

 for x in elementdata:
 df_row.append(x[0].text)

 df.append(df_row)

get the column names
column_names = [x.attrib[‘name’] for x in elementdata]

make into a dataframe and print
import pandas as pd
data = pd.DataFrame(df, columns = column_names)
data

Code	Block	3-5 Parsing XML data

You will end up with something like Figure 3-10.

Figure	3-10 The result of Code Block 3-5. Image by author Data source: NYC OpenData. 2018 Central Park
Squirrel Census

We can now (�inally) apply our �ilter on the column shift, using the code in
Code Block 3-6.

AM_data = data[data['shift'] == 'AM']
PM_data = data[data['shift'] == 'PM']

Code	Block	3-6 Apply the �ilter

To make the plots, we have to go back to a geodataframe again. This can be
done by combining the variables x and y into a point geometry as shown in Code
Block 3-7.

AM_geodata = gpd.GeoDataFrame(AM_data,
geometry=gpd.points_from_xy(AM_data['x'], AM_data['y']))
PM_geodata = gpd.GeoDataFrame(PM_data,
geometry=gpd.points_from_xy(PM_data['x'], PM_data['y']))

Code	Block	3-7 Create geometry format

We �inish by building the two plots using Code Block 3-8.

AM_geodata.plot()

plt.title('AM squirrels')

PM_geodata.plot()
plt.title('PM squirrels')

Code	Block	3-8 Building the two plots

The result is shown in Figure 3-11. You now have the maps necessary to
investigate differences in AM and PM squirrels. Again, visual parameters can be
improved here, but that will be covered in Chapter 4. For now, we focus on the
data types and their possibilities.

Figure	3-11 The maps resulting from Code Block 3-8 Image by author Data source: NYC OpenData. 2018
Central Park Squirrel Census

Lines
Line data is the second category of vector data in the world of geospatial data.
They are the logical next step after points. Let’s get into the de�initions straight
away.

De�inition	of	a	Line
Lines are also well-known mathematical objects. In mathematics, we generally
consider straight lines that go from one point to a second point. Lines have no
width, but they do have a length.

In geodata, line datasets contain not just one line, but many lines. Line
segments are straight, and therefore they only need a from point and a to point.

This means that a line needs two sets of coordinates (one of the �irst point and
one of the second point).

Lines consist of multiple line segments, and they can therefore take different
forms, consisting of straight line segments and multiple points. Lines in geodata
can therefore represent the shape of features in addition to length.

An	Example	Line	Dataset	in	Python
In this example, you will discover how to work with lines, by creating a line
dataset from an open dataset that contains only coordinates. You can �ind two
data �iles for this example at www.kaggle.com/usdot/flight-
delays/data?select=flights.csv; it is a licensed public domain.

You can download two datasets: �lights.csv and airports.csv. They are both CSV
�iles with a .csv extension. You can import them easily into pandas using the code
in Code Block 3-9 and Code Block 3-10.

import pandas as pd
flights_data = pd.read_csv('flights.csv')
flights_data

Code	Block	3-9 Import the �lights data in Python

The �lights data is shown in Figure 3-12.

Figure	3-12 The �lights data. Image by author Data source: www.kaggle.com/usdot/�light-delays, Public
Domain

geolookup = pd.read_csv('airports.csv')
geolookup

Code	Block	3-10 Importing the airports data in Python

The airports data is shown in Figure 3-13.

http://www.kaggle.com/usdot/flight-delays/data%253Fselect%253Dflights.csv%3B
https://www.kaggle.com/usdot/flight-delays

Figure	3-13 The airports data. Image by author Data source: www.kaggle.com/usdot/�light-delays, Public
Domain

As you can see inside the data, the airports.csv is a �ile with geolocation
information, as it contains the latitude and longitude of all the referenced
airports. The �lights.csv contains a large number of airplane routes in the USA,
identi�ied by origin and destination airport. Our goal is to convert the routes into
georeferenced line data: a line with a from and to coordinate for each airplane
route.

Let’s start by converting the latitude and longitude variables into a point, so
that the geometry can be recognized in further operations. The following code
loops through the rows of the dataframe to generate a new variable. The whole
operation is done twice, as to generate a “to/destination” lookup dataframe and a
“from/source” lookup dataframe. This is shown in Code Block 3-11.

convert coordinates of geo lookup to a Point
make to and from data set for to and from join
from shapely.geometry import Point
from_geo_lookup = geolookup[['IATA_CODE', 'LATITUDE',
'LONGITUDE']]
from_geo_lookup['geometry_from']= [Point(x,y) for x,y in
zip(from_geo_lookup['LONGITUDE'],
from_geo_lookup['LATITUDE'])]
from_geo_lookup =
from_geo_lookup[['IATA_CODE','geometry_from']]

to_geo_lookup = geolookup[['IATA_CODE', 'LATITUDE',
'LONGITUDE']]
to_geo_lookup['geometry_to']= [Point(x,y) for x,y in zip(
to_geo_lookup['LONGITUDE'], to_geo_lookup['LATITUDE'])]

https://www.kaggle.com/usdot/flight-delays

to_geo_lookup = to_geo_lookup[['IATA_CODE','geometry_to'
]]

Code	Block	3-11 Converting the data – part 1

As the data types are not aligned, the easiest hack here is to convert all the
numbers to strings. There are some missing codes and this would be better to
solve by inspecting the data quality issues, but for this introductory example, the
string conversion does the job for us. You can also see that some columns are
dropped here. This is done in Code Block 3-12.

align data types for the joins
from_geo_lookup['IATA_CODE'] =
from_geo_lookup['IATA_CODE'].map(str)
to_geo_lookup['IATA_CODE'] =
to_geo_lookup['IATA_CODE'].map(str)

flights_data['ORIGIN_AIRPORT'] =
flights_data['ORIGIN_AIRPORT'].map(str)
flights_data['DESTINATION_AIRPORT'] =
flights_data['DESTINATION_AIRPORT'].map(str)
flights_data = flights_data[['ORIGIN_AIRPORT',
'DESTINATION_AIRPORT']]

Code	Block	3-12 Converting the data – part 2

We now get to the step to merge the dataframes of the �lights together with
the from and to geographical lookups that we just created. The code in Code Block
3-13 merges two times (once with the from coordinates and once with the to
coordinates).

flights_data = flights_data.merge(from_geo_lookup, left_on
= 'ORIGIN_AIRPORT', right_on = 'IATA_CODE')
flights_data = flights_data.merge(to_geo_lookup, left_on =
'DESTINATION_AIRPORT', right_on = 'IATA_CODE')
flights_data = flights_data[['geometry_from',
'geometry_to']]
flights_data

Code	Block	3-13 Merging the data

After running this code, you will end up with a dataframe that still contains
one row per route, but it has now got two georeference columns: the from
coordinate and the to coordinate. This result is shown in Figure 3-14.

Figure	3-14 The dataframe resulting from Code Block 3-13. Image by author Data source:
www.kaggle.com/usdot/�light-delays, Public Domain

The �inal step of the conversion process is to make lines out of this to and
from points. This can be done using the LineString function as shown in Code
Block 3-14.

convert points to lines
from shapely.geometry import LineString

lines = []
for i,row in flights_data.iterrows():
 try:
 point_from = row['geometry_from']
 point_to = row['geometry_to']
 lines.append(LineString([point_from, point_to]))
 except:

https://www.kaggle.com/usdot/flight-delays

 #some data lines are faulty so we ignore them
 pass

geodf = gpd.GeoDataFrame(lines, columns=[‘geometry’])
geodf

Code	Block	3-14 Convert points to lines

You will end up with a new geometry variable that contains only LINESTRINGS.
Inside each LINESTRING, you see the four values for the two coordinates (x and y
from, and x and y to). This is shown in Figure 3-15.

Figure	3-15 Linestring geometry. Image by author Data source: www.kaggle.com/usdot/�light-delays, Public
Domain

Now that you have created your own line dataset, let’s make a quick
visualization as a �inal step. As before, you can simply use the plot functionality to
generate a basic plot of your lines. This is shown in Code Block 3-15.

plot the lines

https://www.kaggle.com/usdot/flight-delays

import matplotlib.pyplot as plt
geodf.plot(figsize=(12,12))
plt.title('the world as airpline trajectory lines')

Code	Block	3-15 Plot the data

You should now obtain the map of the USA given in Figure 3-16. You clearly see
all the airplane trajectories expressed as straight lines. Clearly, not all of it is
correct as �lights do not take a straight line (as seen in a previous chapter).
However, it gives a good overview of how to work with line data, and it is
interesting to see that we can even recognize the USA map by just using �light
lines (with some imagination).

Figure	3-16 Plot resulting from Code Block 3-15. Image by author Data source: www.kaggle.com/usdot/�light-
delays, Public Domain

Polygons
Polygons are the next step in complexity after points and lines. They are the third
and last category of vector geodata.

De�inition	of	a	Polygon
In mathematics, polygons are de�ined as two-dimensional shapes, made up of
lines that connect to make a closed shape. Examples are triangles, rectangles,
pentagons, etc. A circle is not of�icially a polygon as it is not made up of straight
lines, but you could imagine a lot of very small straight lines being able to
approximate a circle relatively well.

https://www.kaggle.com/usdot/flight-delays

In geodata, the de�inition of the polygon is not much different. It is simply a list
of points that together make up a closed shape. Polygons are generally a much
more realistic representation of the real world. Landmarks are often identi�ied by
points, but as you get to a very close-up map, you would need to represent the
landmark as a polygon (the contour) to be useful. Roads could be well represented
by lines (remember that lines have no width) but would have to be replaced by
polygons once the map is at a small enough scale to see houses, roads, etc.

Polygons are the data type that has the most information as they are able to
store location (just like points and lines), length (just like lines), and also area and
perimeter.

An	Example	Polygon	Dataset	in	Python
For this example, you can download a map of countries directly through
geopandas. You can use the code in Code Block 3-16 to import the data in Python
using geopandas.

import geopandas as gpd
geojsonfile =
gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
print(geojsonfile)

Code	Block	3-16 Reading polygon data

You’ll see the content of the polygon dataset in Figure 3-17. It contains some
polygons and some multipolygons (polygons that consist of multiple polygons,
e.g., the USA has Alaska that is not connected to their other land, so they need
multiple polygons to describe their territory).

Figure	3-17 Content of the polygon dataImage by author Source: geopandas, BSD 3 Clause Licence

You can easily create a map, as we did before, using the plot function. This is
demonstrated in Code Block 3-17, and this time, it will automatically plot the
polygons.

geojsonfile.plot()

Code	Block	3-17 Plotting polygons

The plot looks as shown in Figure 3-18.

Figure	3-18 The plot of polygons as created in Code Block 3-17. Image by author Source: geopandas, BSD 3
Clause Licence

Some	Simple	Operations	with	Polygons
As polygons are more complex shapes than the previously seen data types, let’s
check out some things that we can do with them. One thing that we can do with
polygons is to compute their surface area very easily. For example, let’s compute a
list of the ten smallest countries.

To do this, we �irst compute the area of all the countries, using the area
attribute of the polygons. We then sort by area and show the �irst ten lines. The
code is shown in Code Block 3-18.

geojsonfile['area'] = geojsonfile['geometry'].apply(lambda
x: x.area)
geojsonfile.sort_values('area').head(10)

Code	Block	3-18 Working with the area

In Figure 3-19, you’ll see the �irst ten rows of this data, which are the world’s
smallest countries in terms of surface area.

Figure	3-19 The �irst ten rows of the data. Image by author Source: geopandas, BSD 3 Clause Licence

We can also compute the length of the borders by calculating the length of the
polygon borders. The length attribute allows us to do so. You can use the code in
Code Block 3-19 to identify the ten countries with the longest contours.

geojsonfile['length'] =
geojsonfile['geometry'].apply(lambda x: x.length)
geojsonfile.sort_values('length',
ascending=False).head(10)

Code	Block	3-19 Identify the ten countries with longest contours

You’ll see the result in Figure 3-20, with Antarctica being the winner. Attention
though, as this may be distorted by coordinate system choice. You may remember
that some commonly used coordinate systems have strong distortions toward
the poles and make more central locations smaller. This could in�luence the types
of computations that are being done here. If a very precise result is needed, you’d
need to tackle this question, but for a general idea of the countries with the
longest borders, the current approach will do.

Figure	3-20 Dataset resulting from Code Block 3-19. Image by author

Rasters/Grids
Raster data, also called grid data, is the counterpart of vector data. If you’re used
to working with digital images in Python, you might �ind raster data quite similar.
If you’re used to working with dataframes, it may be a bit more abstract, and take
a moment to get used to it.

De�inition	of	a	Grid	or	Raster
A grid, or a raster, is a network of evenly spaced horizontal and vertical lines that
cut a space into small squares. In images, we tend to call each of those squares a
pixel. In mathematics, there are many other uses for grids, so pixel is not a
universal term.

Grid geodata are grids that contain one value per “pixel,” or cell, and therefore
they end up being a large number of values �illing up a square box. If you are not
familiar with this approach, it may seem unlikely that this could be converted into
something, but once a color scale is assigned to the values, this is actually how
images are made. For raster/grid maps, the same is true.

Importing	a	Raster	Dataset	in	Python
On the following website, you can download a GeoTIF �ile that contains an
interpolated terrain model of Kerbernez in France:

https://geo.data.gouv.fr/en/datasets/b0a420b9e003d45aaf
0670446f0d600df14430cb

You can use the code in Code Block 3-20 to read and show the raster �ile in
Python.

import rasterio
griddata = r'ore-kbz-mnt-litto3d-5m.tif'
img = rasterio.open(griddata)
matrix = img.read()
matrix

Code	Block	3-20 Opening the raster data

As you can see in Figure 3-21, this data looks nothing like a geodataframe
whatsoever. Rather, it is just a matrix full of the values of the one (and only one)
variable that is contained in this data.

https://geo.data.gouv.fr/en/datasets/b0a420b9e003d45aaf0670446f0d600df14430cb

Figure	3-21 The raster data in Python. Image by author Data source: Ministry of DINSIC,
https://geo.data.gouv.fr/en/datasets/b0a420b9e003d45aaf0670446f0d600df14430cb. Creation data:
Unknown. Open Licence 2.0: www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf

You can plot this data using the default color scale, and you will see what this
numerical representation actually contains. As humans, we are particularly bad at
reading and interpreting something from a large matrix like the one earlier, but
when we see it color-coded into a map, we can get a much better feeling of what
we are looking at. The code in Code Block 3-21 does exactly that.

from rasterio.plot import show
show(img)

Code	Block	3-21 Plotting the raster data

The result of this is shown in Figure 3-22.

https://geo.data.gouv.fr/en/datasets/b0a420b9e003d45aaf0670446f0d600df14430cb
https://www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf

Figure	3-22 The plot of the raster data. Image by author Data source: Ministry of DINSIC,
https://geo.data.gouv.fr/en/datasets/b0a420b9e003d45aaf0670446f0d600df14430cb. Creation data:
Unknown. Open Licence 2.0: www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf

Raster data is a bit more limited than vector data in terms of adding data to it.
Adding more variables would be quite complex, except for making the array into a
3D, where the third dimension contains additional data. However, for plotting,
this would not be of any help, as the plot color would still be one color per pixel,
and you could never show multiple variables for each pixel with this approach.

Raster data is still a very important data type that you will often need and
often use. Any value that needs to be measured over a large area will be more
suitable to raster. Examples like height maps, pollution maps, density maps, and
much more are all only solvable with rasters. Raster use cases are generally a bit
more mathematically complex, as they often use a lot of matrix computations.
You’ll see examples of these mathematical operations throughout the later
chapters of the book.

Key	Takeaways
1.

There are two main categories of geodata: vector and raster. They have
fundamentally different ways of storing data.

2.

Vector data stores objects and stores the geospatial references for those
objects.

3.

Raster data cuts an area into equal-sized squares and stores a data value for
each of those squares.

4.

There are three main types of vector data: point, line, and polygon.
5.

Points are zero-dimensional, and they have no size. They are only indicated
by a single x,y coordinate. Points are great for indicating the location of
objects.

6.
Lines are one-dimensional. They have a length, but no width. They are
indicated by two or more points in a sequence. Lines are great for indicating
line-shaped things like rivers and roads.

7. Polygons are two-dimensional objects. They have a shape and size. Polygons
are great when your objects are polygons and when you need to retain this
information. Polygons can indicate the location of objects if you also need to
locate their contour. It can also apply for rivers and roads when you also need
to store data about their exact shape and width. Polygons are the data type
that can retain the largest amount of information among the three vector data
types

https://geo.data.gouv.fr/en/datasets/b0a420b9e003d45aaf0670446f0d600df14430cb
https://www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf

types.
8.

Raster data is suitable for measurements that are continuous over an area,
like height maps, density maps, heat maps, etc.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
J. Korstanje, Machine	Learning	on	Geographical	Data	Using	Python
https://doi.org/10.1007/978-1-4842-8287-8_4

4.	Creating	Maps
Joos Korstanje1

VIELS MAISONS, France

Mapmaking is one of the earliest and most obvious use cases of the �ield of
geodata. Maps are a special form of data visualization: they have a lot of standards
and are therefore easily recognizable and interpretable for almost anyone.

Just like other data visualization methods, maps are a powerful tool to share a
message about a dataset. Visualization tools are often wrongly interpreted as an
objective depiction of the truth, whereas in reality, map makers and visualization
builders have a huge power of putting things on the map or leaving things out.

An example is color scale picking on maps. People are so familiar with some
visualization techniques that when they see them, they automatically believe
them.

Imagine a map showing pollution levels in a speci�ic region. If you would want
people to believe that pollution is not a big problem in the area, you could build
and share a map that shows areas with low pollution as dark green and very
strongly polluted areas as light green. Add to that a small, unreadable, legend, and
people will easily interpret that there is no big pollution problem.

If you want to argue the other side, you could publish an alternative map that
shows the exact same values, but you depict strong pollution as dark red and
slight pollution as light red. When people see this map, they will directly be
tempted to conclude that pollution is a huge problem in your area and that it
needs immediate action.

It is important to understand that there is no truth in choosing visualization.
There are however a number of levers in mapmaking that you should master well
in order to create maps for your speci�ic purpose. Whether your purpose is
making objective maps, beautiful maps, or communicating a message, there are a
number of tools and best practices that you will discover in this chapter. Those
are important to remember when making maps and will come in handy when
interpreting maps as well.

Mapping	Using	Geopandas	and	Matplotlib

https://doi.org/10.1007/978-1-4842-8287-8_4

As you have already seen numerous examples with geopandas throughout the
earlier chapters of this book, the easiest way to start mapping is to work with
geopandas in combination with matplotlib. Matplotlib is the standard plotting
and visualization library in Python, and it has great and intuitive integration with
geopandas.

Getting	a	Dataset	into	Python
For this �irst example, we’ll be using an example that is based on the geopandas
documentation
(https://geopandas.org/en/stable/docs/user_guide/mapping.h
tml). They have a rich documentation with a lot of detail on how to make maps
using geopandas with matplotlib, so I recommend checking that out for more
detailed mapping options that you may be interested in for your own use cases
and visualizations.

To get started with this example, you can use the built-in example map from
geopandas. It contains polygons of the world’s countries. You can import it into
Python with the code in Code Block 4-1.

import geopandas as gpd
world =
gpd.read_file(gpd.datasets.get_path("naturalearth_lowres"))
world.head()

Code	Block	4-1 Importing the data

Once you execute this code, you’ll see the �irst �ive lines of the geodataframe
containing the world’s countries, as displayed in Figure 4-1.

Figure	4-1 The data. Image by authorData source: geopandas, BSD 3 Clause Licence

For this example, we’ll make a map that is color-coded: colors will be based on
the area of the countries. To get there, we need to add a column to the
geodataframe that contains the countries’ areas. This can be obtained using Code
Block 4-2.

world['area'] = world.geometry.apply(lambda x: x.area)
world.head()

https://geopandas.org/en/stable/docs/user_guide/mapping.html

Code	Block	4-2 Computing the areas

If you now look at the dataframe again, you’ll see that an additional column is
indeed present, as shown in Figure 4-2. It contains the area of each country and
will help us in the mapmaking process.

Figure	4-2 The data with an additional column. Image by authorData source: geopandas, BSD 3 Clause Licence

Making	a	Basic	Plot
In previous chapters, you have already seen how to use the plot method on a
geodataframe. You can add the pyplot rcParams to have a larger output size in
your notebook, which I recommend as the standard size is fairly small. This is
done in Code Block 4-3.

import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = [16,9]
world.plot()

Code	Block	4-3 Adding a �igsize

If you do this, you’ll obtain a plot that just contains the polygons, just like in
Figure 4-3. There is no additional color-coding going on.

Figure	4-3 Larger plot size. Image by authorData source: geopandas, BSD 3 Clause Licence

As the goal of our exercise is to color-code countries based on their total area,
we’ll need to start improving on this map with additional plotting parameters.

Adding color-coding to a plot is fairly simple using geopandas and matplotlib.
The plot method can take an argument column, and when specifying a column
name there, the map will automatically be color-coded based on this column.

In our example, we want to color-code with the newly generated variable
called area, so we’ll need to specify column=’area’ in the plot arguments. This is
done in Code Block 4-4.

world.plot(column='area', cmap='Greys')

Code	Block	4-4 Adding a color-coded column

You will see the black and white coded map as shown in Figure 4-4.

Figure	4-4 The grayscale map resulting from Code Block 4-4. Image by author Data source: geopandas, BSD 3
Clause Licence

Plot	Title
Let’s continue working on this map a bit more. One important thing to add to any
visualization, including maps, is a title. A title will allow readers to easily
understand what the goal of your map is.

When making maps with geopandas and matplotlib, you can use the
matplotlib command plt.title to easily add a title on top of your map. The example
in Code Block 4-5 shows you how it’s done.

world.plot(column='area', cmap='Greys')

plt.title('Area per country')

Code	Block	4-5 Adding a plot title

You will obtain the map in Figure 4-5. It is still the same map as before, but
now has a title on top of it.

Figure	4-5 The same map with a title. Image by author Data source: geopandas, BSD 3 Clause Licence

Plot	Legend
Another essential part of maps (and other visualizations) is to add a legend
whenever you use color or shape encodings. In our map, we are using color-
coding to show the area of the countries in a quick visual manner, but we have not
yet added a legend. It can therefore be confusing for readers of the map to
understand which values are high areas and which indicate low areas.

In the code in Code Block 4-6, the plot method takes two additional arguments.
Legend is set to True to generate a legend. The legend_kwds takes a dictionary
with some additional parameters for the legend. The label will be the label of the
legend, and the orientation is set to horizontal to make the legend appear on the
bottom rather than on the side. A title is added at the end of the code, just like you
saw in the previous part.

import matplotlib.pyplot as plt
world.plot(column='area', cmap='Greys', legend=True)
plt.title('Area per country')

Code	Block	4-6 Adding a legend

You will obtain the plot in Figure 4-6.

Figure	4-6 Adding a legend to the map. Image by author Data source: geopandas, BSD 3 Clause Licence

This is the �inal version of this map for the current example. The map does a
fairly good job at representing a numerical value for different countries. This type
of use case is easily solvable with geopandas and matplotlib. Although it may not
be the most aesthetically pleasing map, it is perfect for analytical purposes and
the like.

Mapping	a	Point	Dataset	with	Geopandas	and	Matplotlib
In the previous example, you have seen how to make a plot with a polygon
dataset. In the current example, we’ll go deeper into plotting with geopandas and
matplotlib. You’ll see how to take a second dataset from the built-in geopandas
dataset, this time a point dataset, and plot it on top of a polygon dataset. This will
teach you how to plot point datasets and at the same time how to plot multiple
datasets on top of each other.

You can import the built-in dataset with the code shown in Code Block 4-7. It
contains the cities of earth and has a point geometry. This is done in Code Block 4-
7.

cities =
gpd.read_file(gpd.datasets.get_path('naturalearth_cities'))
cities.head()

Code	Block	4-7 Importing the data

When executing this code, you’ll see the �irst �ive lines of the dataframe, just
like shown in Figure 4-7. The column geometry shows the points, which are two
coordinates just like you have seen in earlier chapters.

Figure	4-7 Head of the data. Image by author Data source: geopandas, BSD 3 Clause Licence

You can easily plot this dataset with the plot command, as we have done many
times before. This is shown in Code Block 4-8.

cities.plot()

Code	Block	4-8 Plotting the cities data

You will obtain a map with only points on it, as shown in Figure 4-8.

Figure	4-8 Plot of the cities data. Image by author Data source: geopandas, BSD 3 Clause Licence

This plot is really not very readable. We need to add a background into this for
more context. We can use the world’s countries for this, using only the borders of
the countries and leaving the content white.

The code in Code Block 4-9 does exactly that. It starts with creating the �ig and
ax and then sets the aspect to “equal” to make sure that the overlay will not be
causing any mismatching. The world (country polygons) is then plotted using the
color white to make it seem see-through, followed by the cities with a marker=‘x’
for squares and the color=‘black’ for black color.

import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = [16,9]

fig, ax = plt.subplots()
ax.set_aspect('equal')
world.plot(ax=ax, color='white', edgecolor='grey')
cities.plot(ax=ax, marker='x', color='black',
markersize=15)
plt.title('Cities plotted on a country border base map')
plt.show()

Code	Block	4-9 Adding a background to the cities data

The resulting map looks as shown in Figure 4-9.

Figure	4-9 Adding a background to the cities data. Image by author Data source: geopandas, BSD 3 Clause
Licence

Concluding	on	Mapping	with	Geopandas	and	Matplotlib
This introductory example shows how to create basic maps with geopandas and
matplotlib. Mapmaking and data visualization in general are creative processes,

and although I can give you some pointers throughout this book, there is no one
correct way to make visualizations.

If you want to go further into visualization and map mapping, I strongly
recommend checking out the documentation of geopandas mapping and trying
out different things to get yourself familiar with all the options that are out there.

Making	a	Map	with	Cartopy
We now move on to a second well-known map mapping library in Python called
Cartopy. We’ll be walking through one of the simpler examples of Cartopy that is
shown in their documentation, in order to get a grasp of the different options,
strong points, and weak points of this library.

A strong point of Cartopy is that they have a relatively extensive mapping
gallery with maps that you can take and make your own. If you want to check out
the examples on their gallery, they can be found on this link:
https://scitools.org.uk/cartopy/docs/latest/gallery/lines_
and_polygons/feature_creation.html#sphx-glr-gallery-lines-
and-polygons-feature-creation-py.

The example that we’ll be looking at �irst is based on the example called “lines
and polygons feature creation.” It allows you to make a basic land map of a region
of the earth.

The code in Code Block 4-10 shows you how this can be done. It goes through
a number of steps. The �irst important part of the code is to create the
“�ig.add_subplot” in which you call a projection argument to solve any problems of
coordinate systems right from the start. In this case, the PlateCarree projection is
chosen, but the cartopy.crs library has a large number of alternatives.

Secondly, you see that ax.set_extent is called. This will make a subset of the
map ranging from the coordinate (-10, 30) in the left-bottom corner to (40, 70) in
the top-right corner. You’ll see more details on setting extents in the next chapter.

After this, ax.stock_img() is called to add a background map. It is a simple but
recognizable background image with blue seas and brown/green land.

A number of built-in features from Cartopy are also added to the map: Land,
Coastline, and the states_provinces that come from Natural Earth Features and
are set to a 1:10 million scale.

Finally, a copyright is added to the bottom right.

!pip install cartopy
import cartopy
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as cfeature
from matplotlib.offsetbox import AnchoredText

https://scitools.org.uk/cartopy/docs/latest/gallery/lines_and_polygons/feature_creation.html%2523sphx-glr-gallery-lines-and-polygons-feature-creation-py

plt.rcParams["figure.figsize"] = [16,9]

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1,
projection=ccrs.PlateCarree())
ax.set_extent([-10, 40, 30, 70], crs=ccrs.PlateCarree())

background image
ax.stock_img()

use an inbuit feature from cartopy
states_provinces = cfeature.NaturalEarthFeature(
 category='cultural',
 name='admin_1_states_provinces_lines',
 scale='10m',
 facecolor='none')

ax.add_feature(cfeature.LAND)
ax.add_feature(cfeature.COASTLINE)
ax.add_feature(states_provinces, edgecolor='gray')

Add a copyright
text = AnchoredText('\u00A9 Natural Earth; license: public
domain',loc=4, prop={'size': 12}, frameon=True)

ax.add_artist(text)

plt.show()

Code	Block	4-10 Creating a Cartopy plot

The map resulting from this introductory Cartopy example is shown in Figure
4-10.

Figure	4-10 The Cartopy map. Image by author Data source: Natural Earth, provided through Cartopy, Public
Domain

Concluding	on	Mapping	with	Cartopy
Now that you have seen the example with Cartopy, it is good to make a
comparison between the geopandas + matplotlib mapping technique and the
Cartopy technique.

It seems that when working with geopandas, the focus is on the data. The
resulting plot will look quite usable and has a great advantage due to its
matplotlib syntax. Cartopy, on the other hand, is a library really made for mapping.
It has no methods or best practices for storing data.

If you are really into the mapping features, you may prefer Cartopy, as it allows
you to do a lot of things. On the other hand, it is a little less easy to manage, and
you’ll need to do more of the heavy lifting yourself than when you use geopandas.

When looking at the result in terms of aesthetics, I would argue that there is
no clear winner. Similar results can probably be obtained with both methods. It is
hard work to get an aesthetically pleasing map with both of these, but for
obtaining informative maps, they work great.

Making	a	Map	with	Plotly
It is now time to move to a mapping library that will allow you to make much
more aesthetically pleasing visualizations. One library that you can do this with is
Plotly. Plotly is a well-known data visualization library in Python, and it has a well-
developed component for mapping as well.

I strongly recommend checking out the Plotly map gallery (Figure 4-11), which
is a great resource for getting started with mapmaking. Their plot gallery can be
found at https://plotly.com/python/maps/, and it contains a large
number of code examples of different types of graphs, including
– Choropleth maps
– Bubble maps
– Heat maps
– Scatter plots
– And much more

Figure	4-11 Screenshot of the Plotly graph gallery (plotly.com/python/maps)

https://plotly.com/python/maps/

To get a good grasp of the Plotly syntax, let’s do a walk-through of a short
Plotly example, based on their famous graphs in the graph gallery. In this example,
you’ll see how Plotly can easily make an aesthetically pleasing map, just by adding
a few additional functionalities.

You can use the code in Code Block 4-11 to obtain a Plotly express example
dataset that contains some data about cities.

import plotly.express as px
data = px.data.gapminder().query("year==2002")
data.head()

Code	Block	4-11 Map with Plotly

The content of the �irst �ive lines of the dataframe tells us what type of
variables we have. For example, you have life expectancy, population, and gdp per
country per year. The �ilter on 2002 that was applied in the preceding query
makes that we have only one data point per city; otherwise, plotting would be
more dif�icult.

Let’s create a new variable called gdp to make the plot with. This variable can
be computed using Code Block 4-12.

data['gdp'] = data['gdpPercap'] * data['pop']
data.head()

Code	Block	4-12 Adding a new variable gdpPerCap

Let’s now make a bubble map in which the icon for each country is larger or
smaller based on the newly created variable gdp using Code Block 4-13.

fig = px.scatter_geo(data, locations="iso_alpha",
size="gdp", projection="natural earth")
fig.show()

Code	Block	4-13 Adding a variable gdp

Even with this fairly simple code, you’ll obtain a quite interestingly looking
graph, as shown in Figure 4-12.

Figure	4-12 A map with Plotly. Image by author Data source: Plotly data gapminder. Source data is free data
from the World Bank via gapminder.org, CC-BY licence.

Each of the countries has a bubble that makes reference to their gdp, the
continents each have a different color, and you have a background that is the well-
known natural earth. You can hover over the data points to see more info about
each of them.

Concluding	on	Mapping	with	Plotly
As you have probably concluded yourself, the real value of Plotly is in its
simplicity. This library is great for making aesthetically pleasing maps without
having to think long and hard about many of the complications that you may
encounter. I invite you to look at more examples in Plotly to see other powerful
examples and try out some of their galleries’ example code.

Making	a	Map	with	Folium
In this fourth and �inal part on mapmaking with Python, you’ll go another step
further in the direction of better aesthetics. Folium is a Python library that
integrates with a JavaScript library called Lea�let.js.

Folium allows you to create interactive maps, and the results will almost give
you the feeling that you are working in Google Maps or comparable software. All
this is obtained using a few lines of code, and all the complex work for generating
those interactive maps is hidden behind Folium and Lea�let.js.

Folium has extensive documentation with loads of examples and quick-start
tutorials (https://python-

https://python-visualization.github.io/folium/quickstart.html%2523Getting-Started

visualization.github.io/folium/quickstart.html#Getting-
Started). To give you a feel for the type of results that can be obtained with
Folium, we’ll do a short walk-through of some great examples. Let’s start by
simply creating a map and then slowly adding speci�ic parameters to create even
better results.

Using the syntax in Code Block 4-14, you will automatically create a map of the
Paris region. This is a one-line code, which just contains the coordinates of Paris,
and it directly shows the power of the Folium library.

import folium
m = folium.Map(location=[48.8545, 2.2464])
m

Code	Block	4-14 Mapping with Folium

You will obtain an interactive map in your notebook. It looks as shown in
Figure 4-13.

Figure	4-13 A map with Folium. Image by author This Produced Work is based on the map data source from
OpenStreetMap. Map Data Source OpenStreetMap contributors. Underlying data is under Open Database Licence.

https://python-visualization.github.io/folium/quickstart.html%2523Getting-Started

Map (Produced Work) is under the copyright of this book.
https://wiki.osmfoundation.org/wiki/Licence/Licence_and_Legal_FAQ#What_is_the_licence,_how_can_I_use_it?

Now, the interesting thing here is that this map does not contain any of your
data. It seems like it could be a map �illed with complex points, polygons, labels,
and more, and deep down somewhere in the software it is. The strong point of
Folium as a visualization layer is that you do not at all need to worry about this.
All your “background data” will stay cleanly hidden from the user. You can imagine
that this would be very complex to create using the actual polygons, lines, and
points about the Paris region.

Let’s go a step further and add some data to this basemap. We’ll add two
markers (point data in Folium terminology): one for the Eiffel Tower and one for
the Arc de Triomphe.

The code in Code Block 4-15 shows a number of additions to the previous
code. First, it adds a zoom_start. This basically tells you how much zoom you want
to show when initializing the map. If you have played around with the �irst
example, you’ll see that you can zoom out so far as to see the whole world on your
map and that you can zoom in to see a very detailed map as well. It really is very
complete. However, for a speci�ic use case, you would probably want to focus on a
speci�ic region or zone, and setting a zoom_start will help your users identify what
they need to look at.

Second, there are two markers added to the map. They are very intuitively
added to the map using the .add_to method. Once added to the map, you simply
show the map like before, and they will appear. You can specify a popup so that
you see additional information when hovering over your markers. Using HTML
markup, you can create whole paragraphs of information here, in case you’d want
to.

As the markers are point geometry data, they just need x and y coordinates to
be located on the map. Of course, these coordinates have to be in the correct
coordinate system, but that is nothing different from anything you’ve seen before.

import folium
m = folium.Map(location=[48.8545, 2.2464], zoom_start=11)

folium.Marker(
 [48.8584, 2.2945], popup="Eiffel Tower").add_to(m)
folium.Marker(
 [48.8738, 2.2950], popup="Arc de Triomphe").add_to(m)

m

Code	Block	4-15 Add items to the Folium map

If you are working in a notebook, you will then be able to see the interactive
map appear as shown in Figure 4-14. It has the two markers for showing the Eiffel

https://wiki.osmfoundation.org/wiki/Licence/Licence_and_Legal_FAQ%2523What_is_the_licence,_how_can_I_use_it?

Tower and the Arc de Triomphe, just like we started out to do.

Figure	4-14 Improved Folium map. Image by author This Produced Work is based on the map data source from
OpenStreetMap. Map Data Source OpenStreetMap contributors. Underlying data is under Open Database Licence.
Map (Produced Work) is under the copyright of this book.
https://wiki.osmfoundation.org/wiki/Licence/Licence_and_Legal_FAQ#What_is_the
_licence,_how_can_I_use_it?

For more details on plotting maps with Folium, I strongly recommend you to
read the documentation. There is much more documentation out there, as well as
sample maps and examples with different data types.

Concluding	on	Mapping	with	Folium
If making interactive, user-friendly, aesthetically pleasing maps is what you’re
looking for, you’ll discover a great tool in Folium. Its built-in background maps can

https://wiki.osmfoundation.org/wiki/Licence/Licence_and_Legal_FAQ%2523What_is_the_licence,_how_can_I_use_it?

be a strong advantage if you’re looking to plot little datasets in such a way to
obtain a geospatial context through the background maps, without having to
obtain any data about this background data.

Folium allows you to create beautiful interactive maps with little data and is
therefore great for visualization-oriented use cases. For scienti�ic maps and more
analytical and mathematical purposes, a disadvantage could be that the
background maps take the eyes off of what your analysis is trying to showcase.
Less fancy maps could be a better choice in that case.

Key	Takeaways
1.

There are many mapping libraries in Python, each with its speci�ic advantages
and disadvantages.

2.

Using geopandas together with matplotlib is probably the easiest and most
intuitive approach to making maps with Python. This approach allows you to
work with your dataframes in an intuitive pandas-like manner in geopandas
and use the familiar matplotlib plotting syntax. Aesthetically pleasing maps
may be a little bit of work to obtain.

3.
Cartopy is an alternative that is less focused on data and more on the actual
mapping part. It is a very speci�ic library to cartography and has good support
for different geometries, different coordinate systems, and the like.

4.
Plotly is a visualization library, and it is, therefore, less focused on the
geospatial functionalities. It does come with a powerful list of visualization
options, and it can create aesthetically pleasing maps that can really
communicate a message.

5.
Folium is a great library for creating interactive maps. The maps that you can
create even with little code are of high quality and are similar in user
experience to Google Maps and the like. The built-in background maps allow
you to make useful maps even when you have very little data to show.

6.
Having seen those multiple approaches to mapmaking, the most important
takeaway is that maps are created for a purpose. They either try to make an
objective representation of some data, or they can try to send a message.
They can also be made for having something that is nice to look at. When
choosing your method for making maps with Python, you should choose the
library and the method that best serves your purpose. This always depends
on your use case.

Part	II
GIS	Operations

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
J. Korstanje, Machine	Learning	on	Geographical	Data	Using	Python
https://doi.org/10.1007/978-1-4842-8287-8_5

5.	Clipping	and	Intersecting
Joos Korstanje1

VIELS MAISONS, France

In the previous four chapters, you have discovered the foundations of
working with geodata. In the �irst chapter, you have seen what geodata is,
how to represent it, and a general overview of tools for using geodata.
After that, Chapter 2 has given you a deeper introduction to coordinate
systems and projections, which gives you a framework in which
coordinates can be used.

Chapter 3 has shown you how to represent geographical data in
practice, using one of the geographical data types or shapes. Chapter 4
has given you an introduction to creating maps.

At this point, you should start having a general idea of geodata and
start getting some understanding of what can be done with it, both in a
general, theoretical sense and in a practical sense through the Python
examples that have been presented.

Now that this introduction is done, the remainder of this book will
serve two main objectives. In the coming four chapters, we will focus on
four standard operations in geodata processing. The goal here will be to
show how to use Python for tasks that are generally already implemented
in more speci�ic GIS tools and systems. When using Python for your GIS
work, it is essential that you have these types of standard geodata
processing tasks in your personal toolkit.

More advanced use cases using machine learning are much less
commonly implemented in GIS tools, and their easy availability is what
makes Python a great choice as a tool for geodata. These use cases will be
covered in the �inal chapters of the book.

The standard operations that will be covered are
Clipping and intersecting

https://doi.org/10.1007/978-1-4842-8287-8_5

Buffering
Merge and dissolve
Erase

The �irst of the standard operations, clipping and intersecting, is
covered in this chapter. Let’s start by giving a general de�inition of the
clipping operation and do an example in Python. We will then do the same
for the intersecting operation.

What	Is	Clipping?
Clipping, in geoprocessing, takes one layer, an input layer, and uses a
speci�ied boundary layer to cut out a part of the input layer. The part that
is cut out is retained for future use, and the rest is generally discarded.

The clipping operation is like a cookie cutter, in which your cookie
dough is the input layer in which a cookie-shaped part is being cut out.

A	Schematic	Example	of	Clipping
Let’s clarify this de�inition using a more intuitive example. Imagine that
you are working with geodata of a public park. You can get a lot of public
data from the Internet, but of course any public data is unlikely to be
exactly catered to the size of your park: it will generally be on a much
larger scale.

To make working with the data easier, you can use a clipping
operation to get all the data back to a smaller size and keep only data that
is relevant for your park. The schematic drawing in Figure 5-1 shows how
this would work.

Figure	5-1 Schematic overview of the clipping operation. Image by author

What	Happens	in	Practice	When	Clipping?
As you have understood by now, any mapping information is just data.
Let’s try to understand what happens to the data when we are executing a
clipping operation.

In practice, the clipping operation can have multiple effects,
depending on the input data. If you are working with raster data, a
clipping operation would simply remove the pixels of the raster that are
not selected and keep the pixels that are still relevant. The previous
schematic drawing shows what would happen with raster data. You can
consider that the input data consists of a large number of pixels. In the
output, the nonrelevant pixels have been deleted.

With point data, the same is true: some points will be selected, other
points not. In terms of data, this means dropping the rows of data that are
not to be retained. The schematic drawing in Figure 5-2 shows this case.

Figure	5-2 Schematic drawing of clipping points. Image by author

When clipping a line dataset, things become more complicated, as
lines may start inside the clip boundaries and end outside of them. In this
case, the part of the line that is inside the boundary has to be kept, but the
part that is outside of the boundary has to be removed. The result is that
some rows of data will be entirely removed (lines that are completely out
of scope) and some of them will be altered (lines that are partly out of

scope). This will be clearer with a more detailed schematic drawing that
is shown in Figure 5-3. In this schematic drawing, the data is line data;
imagine, for example, a road network. The clip is a polygon.

Figure	5-3 Schematic drawing of clipping lines. Image by author

In the coming part, you will see a more practical application of this
theory by applying the clipping operation in Python.

Clipping	in	Python
In this example, you will see how to apply a clipping operation in Python.
The dataset is a dataset that I have generated speci�ically for this
exercise. It contains two features:

A line that covers a part of the Seine River (a famous river in Paris,
France, which also covers a large part of the country of France)
A polygon that covers the center of Paris

The goal of the exercise is to clip the Seine River to the Paris center
region. This is a very realistic use of the clipping operation. After all,
rivers are often multicountry objects and are often displayed in maps.
When working on a more local map, you will likely encounter the case
where you will have to clip rivers (or other lines like highways, train lines,
etc.) to a more local extent.

Let’s start with importing the dataset and opening it. You can �ind the
data in the GitHub repository. For the execution of this code, I’d
recommend using a Kaggle notebook or a local environment, as Colab has
an issue with the clipping function at the time of writing.

You can import the data using geopandas, as you have learned in
previous chapters. The code for doing this is shown in Code Block 5-1.

import geopandas as gpd
import fiona

gpd.io.file.fiona.drvsupport.supported_drivers['KML']
= 'rw'
data = gpd.read_file('ParisSeineData.kml')
print(data)

Code	Block	5-1 Importing the data

The data looks as shown in Figure 5-4.

Figure	5-4 The dataset. Image by author

We can quickly use the geopandas built-in plot function to get a plot of
this data. Of course, you have already seen more advanced mapping
options in the previous chapters, but the goal here is just to get a quick
feel of the data we have. This is done in Code Block 5-2.

data.plot()

Code	Block	5-2 Plotting the data

When using this plot method, you will observe the map in Figure 5-5,
which clearly contains the two features: the Seine River as a line and the

Paris center as a polygon.

Figure	5-5 The plot resulting from Code Block 5-2. Image by author

Now, as stated in the introduction of this example, the goal is to have
only the Seine River line object, but to clip it to the size of the Paris river.
The �irst step is to split our data object into two separate objects. This
way, we will have one geodataframe with the Seine River and a second
geodataframe with the Paris polygon. This will be easier to work with.
You can extract the Seine River using the code in Code Block 5-3.

seine = data.iloc[0:1,:]
seine.plot()

Code	Block	5-3 Extract the Seine data

You can verify in the resulting plot (Figure 5-6) that this has been
successful.

Figure	5-6 The plot resulting from Code Block 5-3. Image by author

Now, we do the same for the Paris polygon using the code in Code
Block 5-4.

paris = data.iloc[1:2,:]
paris.plot()

Code	Block	5-4 Extracting the Paris data

You will obtain a plot with the Paris polygon to verify that everything
went well. This is shown in Figure 5-7.

Figure	5-7 The plot resulting from Code Block 5-4. Image by author

Now comes the more interesting part: using the Paris polygon as a
clip to the Seine River. The code to do this using geopandas is shown in
Code Block 5-5.

paris_seine = seine.clip(paris)
paris_seine

Code	Block	5-5 Clipping the Seine to the Paris region

You will obtain a new version of the Seine dataset, as shown in Figure
5-8.

Figure	5-8 The dataset after clipping. Image by author

You can use the code in Code Block 5-6 to plot this version to see that
it contains only those parts of the Seine River that are inside the Paris
center region.

paris_seine.plot()

Code	Block	5-6 Plotting the clipped data

You will see the result in Figure 5-9.

Figure	5-9 The Seine River clipped to the Paris polygon. Image by author

This result shows that the goal of the exercise is met. We have
successfully imported the Seine River and Paris polygon, and we have
reduced the size of the Seine River line data to �it inside Paris.

You can imagine that this can be applied for highways, train lines,
other rivers, and other line data that you’d want to use in a map for Paris,
but that is available only for a much larger extent. The clipping operation
is fairly simple but very useful for this, and it allows you to remove
useless data from your working environment.

What	Is	Intersecting?
The second operation that we will be looking at is the intersection. For
those of you who are aware of set theory, this part will be relatively
straightforward. For those who are not, let’s do an introduction of set
theory �irst.

Sets, in mathematics, are collections of unique objects. A number of
standard operations are de�ined for sets, and this is generally helpful in
very different problems, one of which is geodata problems.

As an example, we could imagine two sets, A and B:
– Set A contains three cities: New York, Las Vegas, and Mexico City.
– Set B contains three cities as well: Amsterdam, New York, and Paris.

There are a number of standard operations that are generally applied
to sets:
– Union: All elements of both sets
– Intersection: Elements that are in both sets
– Difference: Elements that are in one but not in the other (not

symmetrical)
– Symmetric difference: Elements that are in A but not in B or in B but

not in A
With the example sets given earlier, we would observe the following:

– The union of A and B: New York, Las Vegas, Mexico City, Amsterdam,
Paris

– The intersection of A and B: New York
– The difference of A with B: Las Vegas, Mexico City
– The difference of B with A: Amsterdam, Paris
– The symmetric difference: Las Vegas, Mexico City, Amsterdam, Paris

The diagram in Figure 5-10 shows how these come about.

Figure	5-10 part 1: Set operations. Image by author

Figure	5-10 part 2: More set operations. Image by author

In the �irst part of this chapter, you have seen that �iltering is an
important basic operation in geodata. Set theory is useful for geodata, as
it allows you to have a common language for all these �ilter operations.

The reason that we are presenting the intersection in the same
chapter as the clip is that they are relatively similar and are often
confused. This will allow us to see what the exact similarities and
differences are.

What	Happens	in	Practice	When	Intersecting?
An intersection in set theory takes two input sets and keeps only those
items from the set that are present in both. In geodata processing, the
same is true. Consider that your sets are now geographical datasets, in
which we use the geographical location data as identi�ier of the objects.
The intersection of two objects will keep all features (columns) of both
datasets, but it will keep only those data points that are present in both
datasets.

As an example, let’s consider that we again use the Seine River data,
and this time we use the main road around Paris (Boulevard
Périphérique) to identify places at which we should �ind bridges or
tunnels. This could be useful, for example, if we have no data about
bridges and tunnels yet, and we want to automatically identify all
locations at which we should �ind bridges or tunnels.

The intersection of the two would allow us to keep both the
information about the road data and the data from the river dataset while
reducing the data to the locations where intersections are to be found.

Of course, this can be generalized to a large number of problems
where the intersection of two datasets is needed.

Conceptual	Examples	of	Intersecting	Geodata
Let’s now see some examples of how the intersection operation can apply
to geodata. Keep in mind that in raster data, there are no items, just
pixels, so using set theory is only useful for vector data. You will now see a
number of examples of the different vector data types and how an
intersection would work for them.

Let’s start with considering what happens when intersecting points
with points. As a point has no width nor length, only a location, the only
intersection that we can do is identify whether points from one dataset
overlap with points from the other dataset. If they do, we can consider
that these overlapping points are in the intersection. The schematic
drawing in Figure 5-11 shows an example of this.

Figure	5-11 Schematic drawing of intersecting. Image by author

This basically just �ilters out some points, and the resulting shapes
are still points. Let’s now see what happens when applying this to two
line datasets.

Line datasets will work differently. When two lines have a part at the
exact same location, the resulting intersection of two lines could be a line.
In general, it is more likely that two lines intersect at a crossing or that
they are touching at some point. In this case, the intersection of two lines
is a point. The result is therefore generally a different shape than the
input. This is shown in the schematic drawing in Figure 5-12.

Figure	5-12 Schematic drawing of intersecting lines. Image by author

The lines intersect at three points, and the resulting dataset just
shows these three points. Let’s now see what happens when intersecting
polygons.

Conceptually, as polygons have a surface, we consider that the
intersection of two polygons is the surface that they have in common.
The result would therefore be the surface that they share, which is a
surface and therefore needs to be polygon as well. The schematic drawing
in Figure 5-13 shows how this works.

Figure	5-13 Intersecting polygons. Image by author

The result is basically just one or multiple smaller polygons. In the
following section, you will see how to apply this in Python.

Intersecting	in	Python
Let’s now start working on the example that was described earlier in this
chapter. We take a dataset with the Boulevard Périphérique and the Seine
River, and we use the intersection of those two to identify the locations
where the Seine River crosses the Boulevard Périphérique.

You can use the code in Code Block 5-7 to import the data and print
the dataset.

gpd.io.file.fiona.drvsupport.supported_drivers['KML']
= 'rw'
data =
gpd.read_file('ParisSeineData_example2_v2.kml')
data.head()

Code	Block	5-7 Import and print the data

You will observe the data in Figure 5-14.

Figure	5-14 The data. Image by author

There are two polygons, one called Seine and one called Boulevard
Périphérique. Let’s use Code Block 5-8 to create a plot to see what this
data practically looks like. We can use the cmap to specify a colormap and
obtain different colors. You can check out the matplotlib documentation
for an overview of colormaps; there are many to choose from.

data.plot(cmap='tab10')

Code	Block	5-8 Plot the data with a colormap

You will obtain the result in Figure 5-15.

Figure	5-15 The plot resulting from Code Block 5-8. Image by author

Compared to the previous example, the data has been converted to
polygons here. You will see in a later chapter how to do this automatically
using buffering, but for now it has been done for you, and the polygon
data is directly available in the dataset.

We can clearly see two intersections, so we can expect two bridges (or
tunnels) to be identi�ied. Let’s now use the intersection function to �ind
these automatically for us.

The code in Code Block 5-9 shows how to use the overlay function in
geopandas to create an intersection.

Extract periph data
periph = data.iloc[0:1,:]

Extract seine data
seine = data.iloc[1:2,:]

intersection = seine.overlay(periph,
how='intersection')
intersection

Code	Block	5-9 Creating an intersection

The result is a dataset with only the intersection of the two polygons,
as shown in Figure 5-16.

Figure	5-16 The plot resulting from Code Block 5-9. Image by author

The resulting object is a multipolygon, as it contains two polygons:
one for each bridge (or tunnel). You can see this more easily when
creating the plot of this dataset using Code Block 5-10.

intersection.plot()

Code	Block	5-10 Plotting the intersection

The result may look a bit weird without context, but it basically just
shows the two bridges/tunnels of the Parisian Boulevard Périphérique.
This is shown in Figure 5-17.

Figure	5-17 The two crossings of the Seine and the Boulevard Périphérique. Image by author

The goal of the exercise is now achieved. We have successfully created
an automated method for extracting locations where roads cross rivers.
If we would now want to do this for the whole city, we could simply �ind
datasets with all Paris’s roads and rivers and use the same method to �ind
all the bridges in Paris.

Of course, this was just one example, and you can generalize this to
many situations where creating intersections is useful, for example, to
create new features in your dataset if you want to do machine learning or
for adding new features on maps.

It will be useful to keep in mind that there are other options in the
overlay function, of which we will see some in coming chapters. These are
all related to other operations in set theory, which is a very practical way
to think about these basic geodata operations.

Difference	Between	Clipping	and	Intersecting
Now that you have seen both the clipping and the intersection tools, you
should understand that both of them generally reduce the quantity of
data. There is a fundamental difference between the two, and your choice
for the tool should depend on what you intend to accomplish.

Clipping reduces data by taking an input dataset and a boundary
dataset. The resulting output data is of the exact shape of the input data,
only limited to the geographic extent imposed by the boundary dataset.
The only data that is kept is the data of the input layer. You have seen in
the clipping example that the Paris polygon was not present in the
output: only the Seine River was present, yet in a geographically reduced
form.

With intersections, both datasets can be considered as equally
important. There is not one input dataset and one boundary dataset, but
there are two input datasets. The resulting output is a combination that
keeps all the information from both input datasets while still keeping
only points that coincide geographically.

In the intersection example that will be done after this, you’ll see that
the output contains data from both input datasets and that it is therefore
different from the clipping operation.

Key	Takeaways
1.

There are numerous basic geodata operations that are standardly
implemented in most geodata tools. They may seem simple at �irst
sight, but applying them to geodata can come with some dif�iculties.

2.
The clipping operation takes an input dataset and reduces its size to
an extent given by a boundary dataset. This can be done for all
geodata data types.

3.
Using clipping for raster data or points comes down to deleting the
pixel points that are out of scope.

4.

Using clipping for lines or polygons will delete those lines and
polygons that are out of scope entirely, but will create a new reduced
form for those points that are partly inside and partly outside of the
boundaries.

5.
The intersection operation is based on set theory and allows to �ind
features that are shared between two input datasets. It is different
from clipping, as it treats the two datasets as input and therefore
keeps the features of both of them. In clipping, this is not the case, as
only the features from the input dataset are considered relevant.

6.
Intersecting points basically comes down to �iltering points based on
their presence in both datasets.

7.

Intersecting lines generally results in points (either crossings
between two lines or touchpoints between two curving lines), but
they can also be lines if two lines are perfectly equal on a part of their
trajectory.

8.
Intersecting polygons will result in one or multiple smaller polygons,
as the intersection is considered to be the area that the two polygons
have in common.

9. You have seen how to use geopandas as an easy tool for both clipping
and intersecting operations.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
J. Korstanje, Machine	Learning	on	Geographical	Data	Using	Python
https://doi.org/10.1007/978-1-4842-8287-8_6

6.	Buffers
Joos Korstanje1

VIELS MAISONS, France

In the previous chapter, we have started looking at a number of common
geospatial operations: data operations that are not possible, or at least
not common, on regular data, but that are very common on geospatial
data.

The standard operations that will be covered are
Clipping and intersecting
Buffering
Merge and dissolve
Erase

In the previous chapter, you have already seen two major operations.
You have �irst seen how to clip data to a speci�ic extent, mainly for the use
of dropping data based on a spatial range. You have also seen how to use
intersecting to create data based on applying set theory on geospatial
datasets. It was mentioned that other set theory operations can be found
in that scope as well.

In this chapter, we will look at a very different geospatial operation.
You will discover the geospatial operation of buffering or creating buffers.
They are among the standard operations of geospatial operations, and it
is useful to master this tool.

Just like intersecting, the buffer is a tool that can be used either as a
stand-alone or as a tool for further analysis. It was not mentioned, but in
the example of intersections, a buffer operation was used to create
polygon data of the bridges and rivers.

This clearly shows how those spatial operations should all be seen as
tools in a toolkit, and when you want to achieve a speci�ic goal, you need

https://doi.org/10.1007/978-1-4842-8287-8_6

to select the different tools that you need to get there. This often means
using different combinations of tools in an intelligent manner. The more
tools you know, the more you will be able to achieve.

We will start this chapter with an introduction into the theory behind
the buffer, and then do a number of examples in Python, in which you will
see how to create buffers using different geodata types.

What	Are	Buffers?
Buffers are newly created polygons that surround other existing shapes.
The term buffering is adequate, as it really consists of creating a buffer
around an existing object.

You can create buffers around all vector data objects, and they always
become polygons. For example, this would give the following results
based on data type:
– When you create a buffer around a point, you will end up with a new

buffer polygon that contains the surrounding area around that point.
– By adding a buffer to a line, you have a new feature that contains the

area around that line.
– Buffers around polygons will also contain the area just outside the

polygon.
Buffers are newly created objects. After computing the buffer polygon,

you still have your original data. You will simply have created a new
feature which is the buffer.

A	Schematic	Example	of	Buffering
Let’s clarify this de�inition using a more intuitive example. We will take
the example that was used in the previous chapter as well, in which we
had a line dataset of roads, but we needed to transform those roads into
polygons to take into account the width of the road. In the image in
Figure 6-1, you see a road depicted �irst as a polygon and then as a line.

Figure	6-1 Showing the road �irst as a polygon and then as a line. Image by author

Representing the road as a line will allow you to do many things, like
compute the length of a road, �ind crossings with other roads and make a
road network, etc. However, in real life, a road has a width as well. For
things like urban planning around the road, building a bridge, etc., you
will always need to know the width of the road at each location.

As you have seen when covering data types in Chapter 3, lines have a
length but not width. It would not be possible to represent the width of a
line. You could however create a buffer around the line and give the buffer
a speci�ied width. This would result in a polygon that encompasses the
road, and you would then be able to generate a polygon-like data.

What	Happens	in	Practice	When	Buffering?
Let’s now see some examples of how the intersection operation can apply
to geodata. Keep in mind that in raster data, there are no items, just
pixels, so using set theory is only useful for vector data. You will now see a
number of examples of the different vector data types and how an
intersection would work for them.

Buffers	for	Point	Data
Let’s start with considering what happens when constructing buffers
around points. Points have no width or length, just location. If we create a
buffer, we generally make buffers of which the borders are equally far
away from the buffered object. Therefore, buffers around points would
generally be circles. The chosen size of the buffer would determine the
size of those circles. You can see an example in the schematic drawing in
Figure 6-2.

Figure	6-2 Buffers for point data. Image by author

In this schematic drawing, you see the left image containing points,
which are depicted here as stars. In the right image, you see how the
buffers are circular polygons that are formed exactly around the point.

Although it may seem dif�icult to �ind use cases for this, there are
cases where this may be useful. Imagine that your point data are sources
of sound pollution and that it is known that the sound can be heard a
given number of meters from the source. Creating buffers around the
point would help to determine regions in which the sound problems
occur.

Another, very different use case could be where you collect data
points that are not very reliable. Imagine, for example, that they are gps
locations given by a mobile phone. If you know how much uncertainty
there is in your data points, you could create buffers around your data
points that state that all locations that are inside the buffer may have
been visited by the speci�ic mobile phone user. This can be useful for
marketing or ad recommendations and the like.

Buffers	for	Line	Data
Let’s now consider the case in which we apply buffers to line data. A �irst
schematic example was already given before. In that example, a line
dataset was present, but it needed to be converted into a polygon to use
it for the intersection exercise.

Let’s consider another example. Imagine that you are planning a
railroad location somewhere, and you need to investigate the amount of
noise problems that you are going to observe and how many people this
is going to impact. This is an interesting example, as it advances on the
sound pollution problem introduced earlier.

We could imagine building different buffers around the railroad (one
for very strongly impacted locations and one for moderately impacted
houses). The schematic drawing in Figure 6-3 shows how building
different buffers around the railroad could help you in solving this
problem.

Figure	6-3 Buffers for line data. Image by author

You see that the left image contains one line (the planned railroad)
and a number of houses (depicted as stars). On the top right, you see a
narrow buffer around the line, which shows the heavy impact. You could
�ilter out the points that are inside this heavy impact buffer to identify
them in more detail. The bottom-left graph contains houses with a
moderate impact. You could think of using set operations from the
previous chapter to select all moderate impact houses that are not inside
the heavy impact buffer (e.g., using a difference operation on the buffer,
but other approaches are possible as well).

Buffers	for	Polygon	Data

The third and last data type that we’ll discuss for buffering is the polygon.
Imagine that you have a geographical dataset of an area of a city, in which
you have a lake as a feature. This lake is well known to have a path around
it, yet the path is not visible on the map. You can decide to use a buffer
around the lake to make a quick estimation of the path’s location. The
schematic drawing in Figure 6-4 shows the idea.

Figure	6-4 Buffers for polygon data. Image by author

In the left part of the schematic drawing, you see the lake polygon, an
oval. On the right, you see that a gray buffer has been created around the
lake – maybe not the best way to estimate the exact location of your path,
but de�initely an easy way to create the new feature quickly in your
dataset.

Now that you have seen how buffers work in theory, it is time to move
on to some practice. In the following section, we will start applying these
operations in Python.

Creating	Buffers	in	Python
In the coming example, we will be looking at a quite simple but intuitive
example of searching a house to rent. Imagine that you have a database
with geographic point data that are houses, and you want to do a geodata
lookup to test for a number of criteria. In this example, we will go through
a number of examples using buffers. You will discover how you can use
buffers for your house searching criteria:

You will see how to use buffers around points to investigate whether
each of the houses is on walking distance to a subway station (a real
added value).

You will then see how to use buffers around a subway line to make sure
that the house is not disturbed by the noises of the subway line (which
can be a real problem).
You will then see how to use buffers around parks to see whether each
of the houses is at least in walking distance of a park.

Let’s start with the �irst criterion by creating buffers around some
subway stations.

Creating	Buffers	Around	Points	in	Python
Let’s start by importing the .kml data. Having gone through this
numerous times in early chapters, this should start to become a habit by
now. The code to import the data is shown in Code Block 6-1.

import geopandas as gpd
import fiona

import the paris subway station data
gpd.io.file.fiona.drvsupport.supported_drivers['KML']
= 'rw'
data = gpd.read_file('Paris_Metro_Stations.kml')
data

Code	Block	6-1 Import the data

The resulting dataframe is shown in Figure 6-5.

Figure	6-5 The point data. Image by author

You will see that the data contains eight subway stations. They do not
have names as that does not really have added value for this example.
They are all point data, having a latitude and longitude. They also have a
z-score (height), but they are not used and they are therefore all at zero.

Let’s make a quick and easy visualization to get a better feeling for the
data that we are working with. You can use the code in Code Block 6-2 to
do so.

data.plot()

Code	Block	6-2 Plotting the data

This plot will show the plot of the data. This is shown in Figure 6-6.

Figure	6-6 The plot resulting from Code Block 6-2. Image by author

We can clearly imagine the points being stations of a subway line.
This plot is not very visual. If you want to work on visuals, feel free to add
some code from Chapter 4 to create background visuals. You can also use
the contextily library, which is a Python package that can very easily
create background maps. The code in Code Block 6-3 shows how it is
done. It uses the example data from Chapter 5 to create a background
map with a larger extent.

!pip install contextily
import contextily as cx

import the paris subway station data
gpd.io.file.fiona.drvsupport.supported_drivers['KML']
= 'rw'
paris = gpd.read_file('ParisSeineData.kml')
paris = paris.loc[1:,:]

use paris data to set extent but leave invisible
ax = paris.plot(figsize=(15,15), color="None")

add the data
data.plot(ax=ax)

add the background map
cx.add_basemap(ax, crs=data.crs)

Code	Block	6-3 Make a plot with a background map

This will result in the map shown in Figure 6-7.

Figure	6-7 The map with a background. Image by author using contextily source data and image as
referenced in the image

As you can see, the points are displayed on the map, on the subway
line that goes east-west. When we add houses to this data, we could
compute distances from each house to each subway station. However, we
could not use these points in a set operation or overlay. The overlay
method would be much easier to compute than the distance operation,
which shows why it is useful to master the buffer operation.

We can use it to combine with other features as speci�ied in the
de�inition of the example. Let’s now add a buffer on those points to start
creating a house selection polygon.

Creating the buffer is quite easy. It is enough to use “.buffer” and
specify the width, as is done in Code Block 6-4.

data.buffer(0.01)

Code	Block	6-4 Creating the buffer

This buffer operation will generate a dataset in polygons that now
contains all the buffer polygons, as shown in Figure 6-8.

Figure	6-8 The buffer polygons. Image by author

It is theoretically better to do this only with Projected Coordinate
Systems, which is not our case here, but for this example it is really not
that impacting. Let’s do without the conversions to keep this example
easier to follow.

Now, let’s add this buffer to our plot, to be able to visualize the areas
in which we could select houses that meet the criterion of distance to a
subway station. The code to do this is shown hereafter. You simply need
to replace the original point dataset to the newly generated buffer
dataset, as is done using Code Block 6-5.

import contextily as cx

import the paris subway station data
gpd.io.file.fiona.drvsupport.supported_drivers['KML']
= 'rw'
paris = gpd.read_file('ParisSeineData.kml')
paris = paris.loc[1:,:]

use paris data to set extent but leave invisible
ax = paris.plot(figsize=(15,15), color="None")

add the data
data.buffer(0.01).plot(ax=ax, edgecolor='black',
color='None')

add the background map
cx.add_basemap(ax, crs=data.crs)

Code	Block	6-5 Create a plot with the buffer data

The buffers are shown as black circles on the background map. You
can check out the result in Figure 6-9.

Figure	6-9 The plot resulting from Code Block 6-5. Image by author using contextily source data
and image as referenced in the image

With this result, we have successfully created a spatial layer to help us
in �iltering houses to select. Let’s now move on to implementing the
following two criteria using buffers as well.

Creating	Buffers	Around	Lines	in	Python
In this second part of the exercise, you will see how to create a buffer
around a line. We will take a line feature that shows the railroad of the
subway line, and we will create a buffer that we consider too close to the
subway line. Imagine that the subway makes quite some noise. For full
disclosure, a large part of the line is actually underground, but let’s leave
that out of the equation here, for the purpose of an easier exercise.

Rather than importing a line dataset, let’s use the point dataset from
before and convert the eight points into one single line feature. To do so,
we �irst need to make sure that the points are in the right order, and then
we pass them to the LineString function from the shapely package. This is
all done in the code in Code Block 6-6.

from shapely.geometry.linestring import LineString
LineString(data.loc[[7,6,5,4,0,1,2,3],
'geometry'].reset_index(drop=True))

Code	Block	6-6 A LineString object

When calling this in a notebook, you will see how a line is
automatically printed, as shown in Figure 6-10.

Figure	6-10 The LineString object printed out. Image by author

This visualization isn’t particularly useful, so we’d better try to add
this to our existing plot. The code in Code Block 6-7 does exactly that, by
storing the LineString as a geopandas dataframe and then plotting it.

import pandas as pd

df = pd.DataFrame(
 {
 'Name': ['metro'],
 'geometry':
[LineString(data.loc[[7,6,5,4,0,1,2,3],
'geometry'].reset_index(drop=True))]
 }
)

gdf = gpd.GeoDataFrame(df)

gdf

Code	Block	6-7 Add this LineString to our existing plot

You will see that the resulting geodataframe has exactly one line,
which is the line representing our subway, as shown in Figure 6-11.

Figure	6-11 The dataframe. Image by author

To plot the line, let’s add this data into the plot with the background
map directly, using the code in Code Block 6-8.

import contextily as cx

use paris data to set extent but leave invisible
ax = paris.plot(figsize=(15,15), color="None")

add the point data
data.buffer(0.01).plot(ax=ax, edgecolor='black',
color='None')

add the line data
gdf.plot(ax = ax, color = 'black')

add the background map
cx.add_basemap(ax, crs=data.crs)

Code	Block	6-8 Add this data in the plot

You now obtain a map that has the subway station buffers and the
subway rails as a line. The result is shown in Figure 6-12.

Figure	6-12 The plot with the two data types. Image by author using contextily source data and
image as referenced in the image

The next step is to compute a buffer around this line to indicate an
area that you want to deselect for your search for a house, to respect the
criteria given in the introduction. This can be done using the same
operation as used before, but now we will choose a slightly smaller buffer
size to avoid deselecting too much areas. This is done in Code Block 6-9.

gdf.buffer(0.001)

Code	Block	6-9 Adding a smaller buffer

By creating the buffer in this way, you end up with a geodataframe
that contains a polygon of the buffer, rather than with the initial line data.
This is shown in Figure 6-13.

Figure	6-13 The polygon with the buffer. Image by author

Now, you can simply add this polygon in the plot, and you’ll obtain a
polygon that shows areas that you should try to �ind a house in and some
subareas that should be avoided. Setting the transparency using the
alpha parameter can help a lot to make more readable maps. This is done
in Code Block 6-10.

import contextily as cx

use paris data to set extent but leave invisible
ax = paris.plot(figsize=(15,15), color="None")

add the point data
data.buffer(0.01).plot(ax=ax, edgecolor='black',
color='green', alpha=0.5)

add the line data
gdf.buffer(0.001).plot(ax = ax, edgecolor='black',
color = 'red', alpha = 0.5)

add the background map
cx.add_basemap(ax, crs=data.crs)

Code	Block	6-10 Improve the plot

You will obtain the intermediate result shown in Figure 6-14.

Figure	6-14 The plot resulting from Code Block 6-10. Image by author using contextily source data
and image as referenced in the image

This shows the map of Paris in which the best circles for use are
marked in green, but in which the red polygon should be avoided as it is
too close to the subway line. In the following section, we will add a third
criterion on the map: proximity to a park. This will be done by creating
buffers on polygons.

Creating	Buffers	Around	Polygons	in	Python
The third criterion for the house selection is proximity to a park. In the
Paris_Parks.kml dataset, you can �ind some parks in Paris. This data is
just to serve the example, it is far from perfect, but it will do the trick for
this exercise. You can import the data using the code in Code Block 6-11.

import the paris parks data
gpd.io.file.fiona.drvsupport.supported_drivers['KML']
= 'rw'
parks = gpd.read_file('Paris_Parks.kml')
parks

Code	Block	6-11 Importing the parks data

In Figure 6-15, you will see that there are 18 parks in this dataset, all
identi�ied as polygons.

Figure	6-15 The data from Code Block 6-11. Image by author

You can visualize this data directly inside our map, by adding it as
done in Code Block 6-12.

import contextily as cx

use paris data to set extent but leave invisible
ax = paris.plot(figsize=(15,15), color="None")

add the point data
data.buffer(0.01).plot(ax=ax, edgecolor='black',
color='green', alpha=0.5)

add the line data
gdf.buffer(0.001).plot(ax = ax, edgecolor='black',
color = 'red', alpha = 0.5)

add the parks
parks.plot(ax=ax, edgecolor='black', color="none")

add the background map
cx.add_basemap(ax, crs=data.crs)

Code	Block	6-12 Visualize the data directly in our map

The parks are shown in the map as black contour lines. No buffers
have yet been created. This intermediate result looks as shown in Figure
6-16.

Figure	6-16 The map with the parks added to it. Image by author using contextily source data and
image as references in the image

Of course, it is unlikely that you will �ind a house inside a park, so we
need to make our search area such that it takes into account a border
around those parks. This, again, can be done by adding a buffer to our
polygon data. The buffer operation works just like it did before, by calling
buffer with a distance. This is done in Code Block 6-13.

parks.buffer(0.01)

Code	Block	6-13 Adding the buffer to the parks

This looks like shown in Figure 6-17.

Figure	6-17 The data resulting from Code Block 6-13

After the buffer, you have polygon data, just like you had before. Yet
the size of the polygon is now larger as it also has the buffers around the
original polygons. Let’s now add this into our plot, to see how this affects
the places in which we want to �ind a house. This is done in Code Block 6-
14.

import contextily as cx

use paris data to set extent but leave invisible
ax = paris.plot(figsize=(15,15), color="None")

add the point data
data.buffer(0.01).plot(ax=ax, edgecolor='none',
color='yellow', alpha=0.5, zorder=2)

add the line data
gdf.buffer(0.001).plot(ax = ax, edgecolor='black',
color = 'red', alpha = 1, zorder=3)

add the parks
parks.buffer(0.01).plot(ax=ax, edgecolor='none',
color="green", alpha = 0.5)

add the background map
cx.add_basemap(ax, crs=data.crs)

Code	Block	6-14 Adding all the data together

The colors and “zorder” (order of overlay) have been adjusted a bit to
make the map more readable. After all, it starts to contain a large number
of features. You will see the result shown in Figure 6-18.

Figure	6-18 The plot resulting from Code Block 6-14. Image by author using contextily source data
and image as referenced in the image

This map is a �irst result that you could use. Of course, you could go
even further and combine this with the theory from Chapter 5, in which
you have learned how to use operations from set theory to combine
different shapes. Let’s see how to do this, with a �inal goal to obtain a
dataframe that only contains the areas in which we do want to �ind a
house, based on all three criteria from the introduction.

Combining	Buffers	and	Set	Operations

To combine the three buffers together, we will need multiple operations.
We �irst need to do an intersection between “subway station proximity”
and “park proximity.” After all, we want to have both of them and cannot
suf�ice having one or the other. The intersection is the right operation for
this, as you have seen in the previous chapter.

The code in Code Block 6-15 creates an intersection layer between the
two buffered dataframes. They are �irst assigned to an individual
dataframe variable each, to create easier-to-use objects.

station_buffer = data.buffer(0.01)
rails_buffer = gdf.buffer(0.001)
park_buffer = parks.buffer(0.01)

A = gpd.GeoDataFrame({'geometry': station_buffer})
B = gpd.GeoDataFrame({'geometry': park_buffer})
C = gpd.GeoDataFrame({'geometry': rails_buffer})

Code	Block	6-15 Prepare to create an intersection layer

Then an overlay method is applied, using the intersection parameter,
as shown in Code Block 6-16.

A_and_B = A.overlay(B, how='intersection')
A_and_B

Code	Block	6-16 Create the intersection layer

You will obtain a dataset that looks like the data shown in Figure 6-19.

Figure	6-19 The data resulting from Code Block 6-16. Image by author

With this intersection of stations and parks, we now need to remove
all locations that are too close to a subway line, as this is expected to be
too noisy, as speci�ied in the introduction.

To do this, we can also use an overlay, but this time we do not need the
intersection from set theory because an intersection would leave us with
all places that have station, park, and railway proximity. However, what
we want is station and park proximity, but not railway proximity. For this,
we need to use the difference operation from set theory. The code in Code
Block 6-17 shows how this can be done.

A_and_B_not_C = A_and_B.overlay(C, how='difference')
A_and_B_not_C

Code	Block	6-17 Creating the difference

The data still looks like a dataframe from before. The only difference
that occurs is that the data becomes much more complex with every step,
as the shapes of our acceptable locations become less and less regular.
Let’s do a map of our �inal object using Code Block 6-18.

import contextily as cx

use paris data to set extent but leave invisible
ax = paris.plot(figsize=(15,15), edgecolor="none",
color="none")

A_and_B_not_C.plot(ax=ax, edgecolor='none',
color='green', alpha=0.8)

add the background map
cx.add_basemap(ax, crs=data.crs)

Code	Block	6-18 Create a map of the �inal object

Figure	6-20 The �inal map of the exercise. Image by author using contextily source data and image
as referenced in the image

As you can see in Figure 6-20, the green areas are now a �ilter that we
could use to select houses based on coordinates. This answers the
question posed in the exercise and results in an interesting map as well. If
you want to go further with this exercise, you could create a small dataset
containing point data for houses. Then, for looking up whether a house

(point data coordinate) is inside a polygon, you can use the operation
that is called “contains” or “within.” Documentation can be found here:
–
https://geopandas.org/en/stable/docs/reference/api
/geopandas.GeoSeries.within.html

–
https://geopandas.org/en/stable/docs/reference/api
/geopandas.GeoSeries.contains.html

This operation is left as an exercise, as it goes beyond the
demonstration of the buffer operation, which is the focus of this chapter.

Key	Takeaways
1.

There are numerous basic geodata operations that are standardly
implemented in most geodata tools. They may seem simple at �irst
sight, but applying them to geodata can come with some dif�iculties.

2.
The buffer operation adds a polygon around a vector object. Whether
the initial object is point, line, or polygon, the result is always a
polygon.

3.
When applying a buffer, one can choose the distance of the buffer’s
boundary to the initial object. The choice depends purely on the use
case.

4.
Once buffers are computed, they can be used for mapping purposes,
or they can be used in further geospatial operations.

https://geopandas.org/en/stable/docs/reference/api/geopandas.GeoSeries.within.html
https://geopandas.org/en/stable/docs/reference/api/geopandas.GeoSeries.contains.html

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
J. Korstanje, Machine	Learning	on	Geographical	Data	Using	Python
https://doi.org/10.1007/978-1-4842-8287-8_7

7.	Merge	and	Dissolve
Joos Korstanje1

VIELS MAISONS, France

In the previous two chapters, we have started looking at a number of common
geospatial operations: data operations that are not possible, or at least not
common, on regular data, but that are very common on geospatial data.

Although this book is working toward machine learning applications, it is
good to have an understanding of the types of geospatial operations that
exist and have a working understanding that will allow you to �igure out other,
comparable operations using documentation or research. The standard
operations that are showcased in this book are

Clipping and intersecting
Buffering
Merge and dissolve
Erase

In the previous chapter, you have already seen clipping, intersecting, and
buffering. You have even seen a use case that combines those methods in a
logical manner.

In this chapter, we will look at merging and dissolving, which are again
very different operations than those previously presented. They are also
among the standard geospatial operations, and it is useful to master these
tools.

As explained in previous chapters, those spatial operations should all be
seen as tools in a toolkit, and when you want to achieve a speci�ic goal, you
need to select the different tools that you need to get there. This often means
using different combinations of tools in an intelligent manner. The more tools
you know, the more you will be able to achieve.

We will start this chapter with the merge operation, covering both theory
and implementation in Python, and we will then move on to the dissolve
operation. At the end, you will see a comparison of both.

https://doi.org/10.1007/978-1-4842-8287-8_7

The	Merge	Operation
Let’s begin by introducing the merge operation. We will start with a
theoretical introduction and some examples and then move on to the Python
implementation of the merge operation.

What	Is	a	Merge?
Merging geodata, just like with regular data, consists of taking multiple input
datasets and making them into a single new output feature. In the previous
chapter, you already saw a possible use case for a merge. If you remember,
multiple “suitability” polygons were created based on multiple criteria. At the
end, all of these polygons were combined into a single spatial layer. Although
another solution was used in that example, a merge could have been used to
get all those layers together in one and the same layer.

A	Schematic	Example	of	Merging
Let’s clarify this de�inition using a visual example. As a simple and intuitive
example, imagine that you have three datasets containing some polygon
features, each on a speci�ic region. You are asked to make a map of the three
regions combined, and you therefore need to �ind a way to put those three
datasets together into a single, three-region, dataset. The merge operation
will do this for you. Figure 7-1 shows you how this works.

Figure	7-1 The merge operation. Image by author

Different	De�initions	of	Merging
The de�inition of the merge operation is not exactly the same depending on
the software that you use. It is important to understand how different types
of merge work, so that you can �ind the one you need based on their
descriptions in the documentation.

The real de�inition of the merge operation is the one in which you append
features together, row-wise. This does not change anything to the existing
features and does not affect anything column-wise. This is what is shown in
the schematic drawing in the example as well.

The word merge can sometimes be used for indicating joins. It would have
been better to call these operations “join,” but some software have not made
this choice. There are two types of joins that are common: spatial joins and
attribute joins.

Attribute joins are probably the type of join that you are already aware of.
This is an SQL-like join in which your geodata has some sort of key that is
used to add information from a second table that has this key as well. An
example is shown in the schematic drawing in Figure 7-2.

Figure	7-2 Attribute join. Image by author

As you can see, this is a simple SQL-like join that uses a common identi�ier
between the two datasets to add the columns of the attribute table into the
columns of the geodata dataset.

An alternative is the spatial join, which is a bit more complex. The spatial
join also combines columns of two datasets, but rather than using a common
identi�ier, it uses the geographic coordinates of the two datasets. The
schematic drawing in Figure 7-3 shows how this can be imagined.

Figure	7-3 Spatial join. Image by author

In this example, the spatial join is relatively easy, as the objects are exactly
the same in both input datasets. In reality, you may well see slight differences

in the features, but you may also have different features that you want to join.
You can specify all types of spatial join parameters to make the right
combination:
– Joining all objects that are near each other (specify a distance)
– Joining based on one object containing the other
– Joining based on intersections existing

This gives you a lot of tools to work with for combining datasets together,
both row-wise (merge) and column-wise (join). Let’s now see some examples
of the merge, attribute join, and spatial join in Python.

Merging	in	Python
In the coming examples, we will be looking at some easy-to-understand data.
There are multiple small datasets, and throughout the exercise, we will do all
the three types of merges.

The data contains
– A �ile with three polygons for Canada, USA, and Mexico
– A �ile with some cities of Canada
– A �ile with some cities of the USA
– A �ile with some cities of Mexico

During the exercise, we will take the following steps:
– Combine the three city �iles using a row-wise merge
– Add a new variable to the combined city �ile using an attribute lookup
– Find the country of each of the cities using a spatial lookup with the

polygon �ile
Let’s now start by combining the three city �iles into a single layer with all

the cities combined.

Row-Wise	Merging	in	Python
The row-wise merge operation is the operation that is generally referred to
when talking about the merge operation. It is like a row-wise concatenation
of the three datasets. Let’s see how to do this in Python using the three
example data �iles containing some of the cities of each country. Let’s start by
importing the data as follows and plot each of them separately and add a
background map, using the functionalities that you have already seen in
earlier chapters. This is shown in Code Block 7-1.

import geopandas as gpd

import fiona

gpd.io.file.fiona.drvsupport.supported_drivers['KML'] =
'rw'
us_cities =
gpd.read_file('/kaggle/input/chapter7/USCities.kml')
us_cities

Code	Block	7-1 Importing the data

The US cities look as shown in Figure 7-4.

Figure	7-4 The US cities

Let’s import the Canada cities as shown in Code Block 7-2.

canada_cities =
gpd.read_file('/kaggle/input/chapter7/CanadaCities.kml')
canada_cities

Code	Block	7-2 Importing the Canada cities

They look as shown in Figure 7-5.

Figure	7-5 The Canada cities. Image by author

The Mexico cities are imported using Code Block 7-3.

mexico_cities =
gpd.read_file('/kaggle/input/chapter7/MexicoCities.kml')
mexico_cities

Code	Block	7-3 Importing the Mexico cities

They look as shown in Figure 7-6.

Figure	7-6 The Mexico cities. Image by author

We can create a map of all three of those datasets using the syntax that
you have seen earlier in this book. This is done in Code Block 7-4.

import contextily as cx

us cities
ax = us_cities.plot(markersize=128, figsize=(15,15))

canada cities
canada_cities.plot(ax=ax, markersize=128)

mexico cities
mexico_cities.plot(ax = ax, markersize=128)

contextily basemap
cx.add_basemap(ax, crs=us_cities.crs)

Code	Block	7-4 Creating a map of the datasets

This will result in the map shown in Figure 7-7.

Figure	7-7 The map created using Code Block 7-4. Image by author using contextily source data and
image as referenced in the image

Now, this is not too bad already, but we actually want to have all this data
in just one layer, so that it is easier to work with. To do so, we are going to do a
row-wise merge operation. This can be done in Python using the pandas
concat method. It is shown in Code Block 7-5.

import pandas as pd
cities = pd.concat([us_cities, canada_cities,
mexico_cities])
cities

Code	Block	7-5 Using concatenation

You will obtain a dataset, in which all the points are now combined. Cities
now contain the rows of all the cities of the three input geodataframes, as can
be seen in Figure 7-8.

Figure	7-8 The concatenated dataframe. Image by author

If we now plot this data, we just have to plot one layer, rather than having
to plot three times. This is done in Code Block 7-6. You can see that it has all
been successfully merged into a single layer.

ax = cities.plot(markersize=128,figsize=(15,15))
cx.add_basemap(ax, crs=us_cities.crs)

Code	Block	7-6 Plotting the concatenated cities

This looks as is shown in Figure 7-9.

Figure	7-9 The map resulting from Code Block 7-6. Image by author using contextily source data and
image as referenced in the image

You can also see that all points now have the same color, because they are
now all on one single dataset. This fairly simple operation of row-wise
merging will prove to be very useful in your daily GIS operations.

Now that we have combined all data into one layer, let’s add some features
using an attribute join.

Attribute	Join	in	Python
To add a new variable based on a lookup table and an SQL-like join, we are
going to use an attribute join. To do this, we �irst generate a lookup table with
some �ictitious data, just to see how to make the operations work. This is
done in Code Block 7-7.

lookup = pd.DataFrame({
 'city': [
 'Las Vegas',
 'New York',
 'Washington',
 'Toronto',
 'Quebec',
 'Montreal',
 'Vancouver',

 'Guadalajara',
 'Mexico City'
],
 'population': [
 1234,
 2345,
 3456,
 4567,
 4321,
 5432,
 6543,
 1357,
 2468

]
})

lookup

Code	Block	7-7 Create a lookup table

The lookup table looks as shown in Figure 7-10.

Figure	7-10 The lookup table. Image by author

Now, to add this data into the geodataframe, we want to do an SQL-like
join, in which the column “population” from the lookup table is added onto
the geodataframe based on the column “Name” in the geodataframe and the
column “city” in the lookup table. This can be accomplished using Code Block
7-8.

cities_new = cities.merge(lookup, left_on='Name',
right_on='city')
cities_new

Code	Block	7-8 Attribute join

You can see in the dataframe that the population column has been added,
as is shown in Figure 7-11.

Figure	7-11 The data resulting from Code Block 7-8. Image by author

You can now access this data easily, for example, if you want to do �ilters,
computations, etc. Another example is to use this attribute data to adjust the
size of each point on the map, depending on the (simulated) population size
(of course, this is toy data so the result is not correct, but feel free to improve
on this if you want to). The code is shown in Code Block 7-9.

ax =
cities_new.plot(markersize=cities_new['population'] //
10, figsize=(15,15))
cx.add_basemap(ax, crs=us_cities.crs)

Code	Block	7-9 Plot the new data

The result in Figure 7-12 shows the cities’ sizes being adapted to the value
in the column population, which was added to the dataset through an
attribute join.

Figure	7-12 The map resulting from Code Block 7-9. Image by author using contextily source data and
image as referenced in the image

Spatial	Join	in	Python
You have now seen how to join two datasets based on tabular attributes. Yet it
is also possible to join data on spatial information. For this example, we will
use the dataset containing approximated country polygons, which can be
found in the KML �ile. Again, the goal is not to provide �inal products, but
rather to show the techniques to make them, so the data is a simulated
approximation of what the real data would look like. You can import the
country polygons using the code in Code Block 7-10.

countries =
gpd.read_file('NorthMiddleAmerciaCountries.kml')
countries

Code	Block	7-10 Importing the data

The data is shown in Figure 7-13.

Figure	7-13 The data resulting from Code Block 7-10

If we plot the data against the background map, you can see that the
polygons are quick approximations of the countries’ borders, just for the
purpose of this exercise. This is done in Code Block 7-11.

ax = countries.plot(figsize=(15,15), edgecolor='black',
facecolor='none')
cx.add_basemap(ax, crs=countries.crs)

Code	Block	7-11 Plotting the data

This will show the map in Figure 7-14.

Figure	7-14 The plot resulting from Code Block 7-11. Image by author using contextily source data and
image as referenced in the image

You can see some distortion on this map. If you have followed along with
the theory on coordinate systems in Chapter 2, you should be able to
understand where that is coming from and have the tools to rework this
map’s coordinate system if you’d want to. For the current exercise, those
distortions are not a problem. Now, let’s add our cities onto this map, using
Code Block 7-12.

ax = countries.plot(figsize=(15,15), edgecolor='black',
facecolor='none')
cities_new.plot(ax=ax,
markersize=cities_new['population'] // 10, figsize=
(15,15))
cx.add_basemap(ax, crs=countries.crs)

Code	Block	7-12 Add the cities to the map

This gives the combined map shown in Figure 7-15.

Figure	7-15 The combined map. Image by author using contextily source data and image as referenced in
the image

This brings us to the topic of the spatial join. In this map, you see that
there are two datasets:
– The cities only contain information about the name of the city and the

population.
– The countries are just polygons.

It would be impossible to use an SQL-like join to add a column country to
each of the rows in the city dataset. However, we can clearly see that based on
the spatial information, it is possible to �ind out in which country each of the
cities is located.

The spatial join is made exactly for this purpose. It allows us to combine
two datasets column-wise, even when there is no common identi�ier: just
based on spatial information. This is one of those things that can be done
with geodata but not with regular data.

You can see in Code Block 7-13 how a spatial join is done between the
cities and countries datasets, based on a “within” spatial join: the city needs
to be inside the polygon to receive its attributes.

cities_3 = cities_new.sjoin(countries, how="inner",
predicate='within')
cities_3

Code	Block	7-13 Spatial join between the cities and the countries

The data looks as shown in Figure 7-16.

Figure	7-16 The data resulting from Code Block 7-13. Image by author

You see that the name of the country has been added to the dataset of the
cities. We can now use this attribute for whatever we want to in the cities
dataset. As an example, we could give the points a color based on their
country, using Code Block 7-14.

cities_3['color'] = cities_3['index_right'].map({0:
'green', 1: 'yellow', 2: 'blue'})

ax = cities_3.plot(markersize=cities_3['population'] //
10, c=cities_3['color'], figsize=(15,15))
cx.add_basemap(ax, crs=cities_3.crs)

Code	Block	7-14 Colors based on country

This results in the map shown in Figure 7-17.

Figure	7-17 The map resulting from Code Block 7-14. Image by author using contextily source data and
image as referenced in the image

With this �inal result, you have now seen multiple ways to combine
datasets into a single dataset:
– The row-wise concatenation operation generally called merge in GIS
– The attribute join, which is done with a geopandas method confusingly

called merge, whereas it is generally referred to as a join rather than a
merge

– The spatial join, which is a join that bases itself on spatial attributes rather
than on any common identi�ier
In the last part of this chapter, you’ll discover the dissolve operation,

which is often useful in case of joining many datasets.

The	Dissolve	Operation
When combining many different datasets, it can often happen that you obtain
a lot of overlapping features, like polygons of different granularity being all
kept in the data, or the same features being present in each of the dataset and
creating doubled information. The dissolve operation is something that can
solve such problems.

What	Is	the	Dissolve	Operation?

The dissolve operation is a tool inside a larger family of generalization tools.
They allow you to combine data that is too detailed or too granular in larger
features. You can see the dissolve tool like a grouping operation. It works in a
similar fashion as the groupby operation in SQL or pandas.

Schematic	Overview	of	the	Dissolve	Operation
You can see a schematic drawing of a dissolve operation in Figure 7-18. In this
image, you see that multiple polygons are being grouped into one, based on
their numerical feature, as shown in Figure 7-18.

Figure	7-18 The dissolve operation. Image by author

The polygons A and B both have the value 1, so grouping by value would
combine those two polygons into one polygon. This operation can be useful
when your data is too granular, which may be because you have done a lot of
geospatial operations or may be because you have merged a large number of
data �iles.

The	Dissolve	Operation	in	Python
Let’s now see how to do a dissolve operation in Python. Let’s use the same
data as in the previous example and try to see how we can use the dissolve
operation to regroup the polygons based on them being in North America
(USA and Canada) or in Middle America (Mexico). To do so, we have to add an
attribute on the countries dataset that indicates this. The code in Code Block
7-15 shows how this can be done.

countries['Area'] = ['North America', 'North America',
'Middle America']
countries

Code	Block	7-15 Add a country attribute

Once you execute this, you’ll see that a new column has been added to the
dataset, as shown in Figure 7-19.

Figure	7-19 The data resulting from Code Block 7-15. Image by author

Now the goal is to create two polygons: one for North America and one for
Middle America. We are going to use the dissolve method for this, as shown in
Code Block 7-16.

areas = countries.dissolve(by='Area')[['geometry']]
areas

Code	Block	7-16 Dissolve operation

The newly created dataset is the grouped (dissolved) result of the
previous dataset, as shown in Figure 7-20.

Figure	7-20 The grouped dataset. Image by author

We can now plot this data to see what it looks like, using Code Block 7-17.

ax = areas.plot(figsize=(15,15), edgecolor='black',
facecolor='none')
cx.add_basemap(ax, crs=areas.crs)

Code	Block	7-17 Plot the data

The map in Figure 7-21 shows the result of the dissolve operation.

Figure	7-21 The result of the dissolve operation. Image by author using contextily source data and image
as referenced in the image

This combined result has been grouped by the feature area, and it is a
generalized version of the input data. The dissolve operation is therefore
much like a groupby operation, which is a very useful tool to master when
working with geodata.

Key	Takeaways
1.

There are numerous basic geodata operations that are standardly
implemented in most geodata tools. They may seem simple at �irst sight,
but applying them to geodata can come with some dif�iculties.

2.
The merge operation is generally used to describe a row-wise merge, in
which multiple objects are concatenated into one dataset.

3.

The attribute join, which is confusingly called merge in geopandas, does a
column-wise, SQL-like join using a common attribute between the two
input datasets.

The spatial join is another column wise join that allows to combine two

4. The spatial join is another column-wise join that allows to combine two
datasets without having any common identi�ier. The correspondence

between the rows of the two datasets is done purely by spatial
information.

5.
Within the spatial join, there are many possibilities to identify the type of
spatial relationship that you want to use for joining. Examples are
presence of intersections between two objects, one object being totally
within the other, one object being partly within the other, or even just two
objects being relatively close.

6.
The dissolve tool is a tool that allows you to generalize a dataset by
grouping your objects into larger objects, based on a speci�ied column.
This operation is much like a groupby operation for spatial features, and
it is useful when you have too many objects, or too granular objects, that
you need to generalize into larger chunks.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
J. Korstanje, Machine	Learning	on	Geographical	Data	Using	Python
https://doi.org/10.1007/978-1-4842-8287-8_8

8.	Erase
Joos Korstanje1

VIELS MAISONS, France

In this chapter, you will learn about the erase operation. The previous
three chapters have presented a number of standard GIS operations.
Clipping and intersecting were covered in Chapter 5, buffering in Chapter
6, and merge and dissolve were covered in Chapter 7.

This chapter will be the last of those four chapters covering common
tools for geospatial analysis. Even though there are much more tools
available in the standard GIS toolbox, the goal here is to give you a good
mastering of the basics and allowing you to be autonomous in learning
the other GIS operations in Python.

The chapter will start with a theoretical introduction of the erase
operation and then follow through with a number of example
implementations in Python for applying the erase on different geodata
types.

The	Erase	Operation
Erasing is not just an operation in GIS analysis but also a common
synonym for deleting. To clarify, let’s �irst look at a “standard” deletion of
a feature, which is not a spatial erase, but just a deletion of a complete
feature based on its ID rather than based on its spatial information.

Whether you are working with points, lines, or polygons, you could
imagine that you simply want to drop one of them. The schematic
drawing in Figure 8-1 shows what this would mean.

https://doi.org/10.1007/978-1-4842-8287-8_8

Figure	8-1 Schematic drawing of the erase operation. Image by author

In this schematic drawing, you can see that there are three polygons
on the left (numbered 1, 2, and 3). The delete operation has deleted
polygon 2, which makes that there are only two polygons remaining in
the output on the right. Polygon 2 was deleted, or with a synonym, erased.
The table containing the data would be affected as shown in Figure 8-2.

Figure	8-2 The table view of this operation. Image by author

This operation is relatively easy to understand and would not need to
be covered in much depth. However, this operation is not what is
generally meant when talking about an erase operation in GIS.

The erase function in GIS is actually much closer to the other spatial
operations that we have covered before. The erase operation takes two
inputs: an input layer, which is the one that we are applying an erase
operation on, and the erase features.

The input layer can be any type of vector layer: polygon, line, points,
or even mixed. The erase feature generally has to be a polygon, although
some implementations may allow you to use other types as well.

What the operation does is erasing all the data in the input layer that
are inside the eraser polygon. This will delete a part of your input data,
generally because you don’t need it.

Let’s look at some schematic overviews of erasing on the different
input data types in the next sections.

Schematic	Overview	of	Spatially	Erasing	Points
Spatially erasing points is really quite similar to the standard delete
operation. When doing a spatial erase, you are going to delete all parts of
the input features that coincide spatially with the erase feature. However,
as points do not have a size, they will be either entirely inside or entirely
outside of the erase feature, which causes each point to be either entirely
deleted or retained. The schematic drawing in Figure 8-3 shows how this
works.

Figure	8-3 Schematic drawing of spatially erasing points. Image by author

You can see how the data table would change before and after the
operation in the schematic drawing in Figure 8-4.

Figure	8-4 The table view behind the spatial erase. Image by author

You can see that the features 2 and 5 have simply been removed by
the erase operation. This could have been done also using a drop of the
features with IDs 2 and 5. Although using a spatial eraser rather than an
eraser by ID for deleting a number of points gives the same functional
result, it can be very useful and even necessary to use a spatial erase here.

When you have an erase feature, you would not yet have the exact IDs
of the points that you want to drop. In this way, the only way to get the list
of IDs automatically is to do a spatial join, or an overlay, which is what
happens in the spatial erase.

When using more complex features like lines and polygons, the
importance of the spatial erase is even larger, as you will see now.

Schematic	Overview	of	Spatially	Erasing	Lines
Let’s now see how this works when doing a spatial erase on line data. In
Figure 8-5, you see that there are two line features and a polygon erase
feature.

Figure	8-5 Erasing lines. Image by author

What happens here is quite different from what happened in the point
example. Rather than deleting or keeping entire features, the spatial
erase has now made an alteration to the features. Before and after, the
data still consists of two lines, yet they are not exactly the same lines
anymore. Only a part of each individual feature was erased, thereby not
changing the number of features but only the geometry. In the data table,
this would look something like shown in Figure 8-6.

Figure	8-6 The table view of erasing lines. Image by author

In the next section, you’ll see how this works for polygons.

Schematic	Overview	of	Spatially	Erasing	Polygons
The functioning of a spatial erase on polygons is essentially the same as
the spatial erase applied to lines. The polygons in the input layer, just like
lines, can be altered when they are falling partly inside the erase feature.
The schematic drawing in Figure 8-7 shows how this works.

Figure	8-7 The spatial erase operation applied to polygons. Image by author

In the drawing, you see that there are three polygons in the input
layer on the top left. The erase feature is a rectangular polygon. Using a
spatial erase, the output contains altered versions of polygons 2 and 3,
since the parts of them that overlaid the erase feature have been cut off.

The impact of this operation in terms of data table would also be
similar to the one on the line data. The tables corresponding to this
example can be seen in Figure 8-8.

Figure	8-8 The table view of spatially erasing on polygons. Image by author

You should now have a relatively good intuition about the spatial
erase operation. To perfect your understanding, the next section will
make an in-depth comparison between the spatial eraser and some
comparable operations, before moving on to the implementation in
Python.

Erase	vs.	Other	Operations
As you have already seen in the previous three chapters, there are a large
number of spatial operations in standard GIS toolkits. This is great, as it
allows you to use the tools that are best suitable for your use case.
However, it is also essential to look into the details of each of the
operations to make sure that you are effectively using the right tool for
the task that you have at hand.

Let’s now look at a few operations that are relatively comparable to
the eraser task. In some cases, you may use another tool for the exact
same task. There is no problem in this, as long as you are attentive to the
exact implementation and look closely at the documentation of the tools
before executing them.

Erase	vs.	Deleting	a	Feature
Deleting an entire feature, also called dropping a feature, or dropping a
row in your data, was already mentioned earlier as being relatively
similar to the spatial eraser. However, there is an essential difference
between the spatial eraser and simply dropping an entire feature.

Dropping a feature will only allow you to drop a feature in its entirety.
The spatial erase can also do this, but the spatial eraser can do more.
When a feature in the input layer is entirely covered by the erase feature,
the entire input feature will be deleted, but when the feature in the input
layer only overlaps partly with the erase feature, there will be an

alteration rather than a deletion. Indeed, the ID of the input feature is not
deleted from the dataset, yet its geometry will be altered: reduced by the
suppression of the part of the feature that overlapped with the erase
feature.

Spatial erase should be used when you want to delete features or part
of features based on geometry. Deleting features otherwise is useful
when you want to delete based on ID or based on any other column
feature of your data.

Erase	vs.	Clip
You have seen the clipping operation as the �irst GIS tool that was
covered. This tool is made for clipping an input layer to a �ixed extent,
meaning that you delete everything that is outside of your extent. As
clipping is also deleting some part of your data, it may be confused with
the spatial erase operation. Let’s look at the difference between the two.

The main difference between the clip and the erase operation is that
the clip operation will reduce your data to a �ixed extent, which can be
coordinates or a feature. With a clip, your goal will always be to retain a
certain part of the data and delete everything that is outside of your
boundaries. In short, you keep inside (where you focus your analysis or
map) and remove data that is further away, outside of your boundaries.

The spatial erase does not necessarily take an inside/outside
boundaries logic. You can use the eraser also to remove small areas
within a general area of interest while keeping the surrounding area.

Whereas both tools are like cookie cutters, the cookie that is cut out is
used differently: with the clip operation, you are using the cookie cutter
to cut out the cookie that you want to keep, whereas with the erase
operation, the cutter is used to cut out parts that you want to throw away.
In short, it is a very similar tool for a very different purpose.

Erase	vs.	Overlay
A third and last operation that is similar to the spatial erase operation is
the spatial overlay operation. As described when covering intersections
in Chapter 5, there are multiple operations from set theory that can be
used on geodata. In that chapter, you mainly focused on the intersection,
meaning retaining all data when both layers are spatially intersecting.

Another operation from set theory is the difference operation. You
can use the same spatial overlay functionality as for the intersection to

compute this difference operation. Rather than retaining parts that
intersect in two input layers, the difference operation will keep all
features and parts of features from input layer A that are not present in
input layer B. Therefore, it will delete from layer A all that is in feature B,
similar to an erase.

Depending on the software that you are using, you may or may not
encounter implementations of the erase operation. For example, in some
versions of the paid ArcGIS software, there is a function to erase. In
geopandas, however, there is not, so we might as well use the overlay
with the difference operation to obtain the same effect/function/result
as the erase operation. This is what we will be doing in the following
section.

Erasing	in	Python
In this exercise, you will be working with a small sample map that was
created speci�ically for this exercise. The data should not be used for any
other purpose than the exercise as it isn’t very precise, but that is not a
problem for now, as the goal here is to master the geospatial analysis
tools.

During the coming exercises, you will be working with a mixed
dataset of Iberia, which is the peninsula containing Spain and Portugal.
The goal of the exercise is to create a map of Spain out of this data,
although there is no polygon that indicates the exact region of Spain: this
must be created by removing Portugal from Iberia.

I recommend running this code in Kaggle notebooks or in a local
environment, as there are some problems in Google Colab for creating
overlays. To get started with the exercise, you can import the data using
the code in Code Block 8-1.

import geopandas as gpd
import fiona

gpd.io.file.fiona.drvsupport.supported_drivers['KML']
= 'rw'
all_data = gpd.read_file('chapter_08_data.kml')
all_data

Code	Block	8-1 Importing the data

You will obtain a dataframe like the one in Figure 8-9.

Figure	8-9 The data table. Image by author

Within this dataframe, you can see that there is a mix of data types or
geometries. The �irst two rows contain polygons of Iberia (which is the
contour of Spain plus Portugal). Then you have a number of roads, which
are lines, followed by a number of cities, which are points.

Let’s create a quick map to see what we are working with exactly
using Code Block 8-2. You can use the code hereafter to do so. If you are
not yet familiar with these methods for plotting, I recommend going back
into earlier chapters to get more familiar with this. From here on, we will
go a bit faster over the basics of data imports, �ile formats, data types,

and mapping as they have all been extensively covered in earlier parts of
this book.

import contextily as cx

plotting all data
ax = all_data.plot(markersize=128, figsize=(15,15),
edgecolor='black', facecolor='none')

adding a contextily basemap
cx.add_basemap(ax, crs=all_data.crs)

Code	Block	8-2 Visualizing the data

As a result of this code, you will see the map shown in Figure 8-10.

Figure	8-10 The map resulting from Code Block 8-2. Image by author

This map is not very clear, as it still contains multiple types of data
that are also overlapping. As the goal here is to �ilter out some data, let’s
do that �irst, before working on improved visualizations.

Erasing	Portugal	from	Iberia	to	Obtain	Spain

The goal is to obtain a map of Spain and remove everything that is in
Portugal from our data. A �irst step for this is to create a polygon of Spain.
As we know that Iberia consists of Spain and Portugal, we just have to
take the difference of Iberia and Portugal to obtain Spain. This is done
using the code in Code Block 8-3.

filter the data based on name
iberia = all_data[all_data['Name'] == 'Iberia']
iberia

Code	Block	8-3 Filter the data based on Name

The resulting dataframe contains only the polygon corresponding to
Iberia. This dataframe is shown in Figure 8-11.

Figure	8-11 The data resulting from Code Block 8-3. Image by author

Now, let’s do the same for Portugal, using the code in Code Block 8-4.

filtering the data based on name
portugal = all_data[all_data['Name'] == 'Portugal']
portugal

Code	Block	8-4 Filtering on Portugal

The resulting dataframe contains only the polygon corresponding to
Portugal. This dataframe looks as shown in Figure 8-12.

Figure	8-12 The data resulting from Code Block 8-4. Image by author

Now, we have two separate objects: one geodataframe containing just
the polygon for Iberia and a second geodataframe containing only one

polygon for Portugal. What we want to obtain is the difference between
the two, as Spain is the part of Iberia that is not Portugal. The code in
Code Block 8-5 does exactly this.

overlay to remove portugal from Iberia and create
spain
spain = iberia.overlay(portugal, 'difference')
plot the resulting polygon of spain
spain.plot()

Code	Block	8-5 Difference operation

The resulting plot is shown in Figure 8-13.

Figure	8-13 The map resulting from Code Block 8-5. Image by author

Although the shape is correct, when we look at the spain dataframe
object, we can see that the name is still set to the input layer, which is
Iberia. You can print the data easily with Code Block 8-6.

spain

Code	Block	8-6 Print the data

The result is shown in Figure 8-14.

Figure	8-14 The Spain data. Image by author

We can reset the name to Spain using the code in Code Block 8-7.

spain.Name = 'Spain'
spain

Code	Block	8-7 Setting the name to Spain

The resulting dataframe now has the correct value in the column
Name, as can be seen in Figure 8-15.

Figure	8-15 The Spain data with the correct name. Image by author

Let’s plot all that we have done until here using a background map, so
that we can keep on adding to this map of Spain in the following
exercises. The code to create this plot is shown in Code Block 8-8.

plot the new Spain polygon
ax = spain.plot(figsize=(15,15), edgecolor='black',
facecolor='none')
add a contextily basemap
cx.add_basemap(ax, crs=spain.crs)

Code	Block	8-8 Plotting the new Spain polygon

The resulting map is shown in Figure 8-16.

Figure	8-16 The plot resulting from Code Block 8-8. Image by author

If you are familiar with the shape of Spain, you will see that it
corresponds quite well on this map. We have successfully created a
polygon for the country of Spain, just using a spatial operation with two
other polygons. You can imagine that such work can occur regularly when
working with spatial data, whether it is for spatial analysis, mapping and
visualizations, or even for feature engineering in machine learning.

In the following section, you will continue this exercise by also
removing the Portuguese cities from our data, so that we only retain
relevant cities for our Spanish dataset.

Erasing	Points	in	Portugal	from	the	Dataset
In this second part of the exercise, you will be working on the point data
that represents the cities of Iberia. In the dataset, you have some of the
major cities of Iberia, meaning that there are some cities in Spain, but
some other cities in Portugal. The goal of the exercise is to �ilter out those
cities that are in Spain and remove those that are in Portugal.

In previous chapters, you have seen some techniques that could be
useful for this. One could imagine, for example, doing a join with an
external table. This external table could be a map from city to country, so

that after joining the geodataframe to this lookup table, you could simply
do a �ilter based on country.

In the current exercise, we are taking a different approach, namely,
using a spatial overlay with a difference operation, which is the same as
an erase. This way, we will erase from the cities all those that have a
spatial overlay with the polygon of Portugal.

The �irst step of this exercise is to create a separate geodataframe
that contains only the cities. It is always easier to work with datasets that
have one and only one data type. Let’s use the code in Code Block 8-9 to
�ilter out all point data, which are the cities in our case.

from shapely.geometry.point import Point
cities_filter = all_data.geometry.apply(lambda x:
type(x) == Point)
cities = all_data[cities_filter]
cities

Code	Block	8-9 Filter out all point data

You will obtain the dataset as shown in Figure 8-17, which contains
only cities.

Figure	8-17 The dataset resulting from Code Block 8-9. Image by author

Now that we have a dataset with only cities, we still need to �ilter out
the cities of Spain and remove the cities of Portugal. As you can see, there
is no other column that we could use to apply this �ilter, and it would be
quite cumbersome to make a manual list of all the cities that are Spanish
vs. Portuguese. Even if it would be doable for the current exercise, it
would be much more work if we had a larger dataset, so it is not a good
practice.

The following code shows how to remove all the cities that have an
overlay with the Portugal polygon. Setting the how parameter to
“difference” makes that they are removed rather than retained. As a
reminder, you have seen other parameters like intersection and union
being used in previous chapters. If you don’t remember what the other
versions do, it would be good to have a quick look back at this point using
Code Block 8-10.

spanish_cities = cities.overlay(portugal, how =
'difference')
spanish_cities

Code	Block	8-10 Difference operation

The spanish_cities dataset is shown in Figure 8-18.

Figure	8-18 The dataset resulting from Code Block 8-10. Image by author

When comparing this with the previous dataset, you can see that
indeed a number of cities have been removed. The Spanish cities that are

kept are Bilbao, Barcelona, Madrid, Seville, Malaga, and Santiago de
Compostela. The cities that are Portuguese have been removed: Porto,
Lisbon, and Faro. This was the goal of the exercise, so we can consider it
successful.

As a last step, it would be good to add this all to the map that we
started to make in the previous section. Let’s add the Spanish cities onto
the map of the Spanish polygon using the code in Code Block 8-11.

ax = spain.plot(figsize=(15,15), edgecolor='black',
facecolor='none')
spanish_cities.plot(ax=ax, markersize=128)
cx.add_basemap(ax, crs=spain.crs)

Code	Block	8-11 Add the Spanish cities on the map

This code will result in the map shown in Figure 8-19, which contains
the polygon of the country Spain, the cities of Spain, and a contextily
basemap for nicer visualization.

Figure	8-19 The map resulting from Code Block 8-11. Image by author

We have now done two parts of the exercise. We have seen how to cut
the polygon, and we have �iltered out the cities of Spain. The only thing
that remains to be done is to resize the roads and make sure to �ilter out
only those parts of the roads that are inside of the Spain polygon. This
will be the goal of the next section.

Cutting	Lines	to	Be	Only	in	Spain
In this section, we will work on the line data, which is the only part of the
input data that we have not treated yet. The input dataset contains �ive
roads. If you look back at the �irst overall plot of the data, you can see that
some of those roads go through both countries, whereas there are some
that are just inside one country. The operation is partly �iltering, but also
altering, as the multicountry roads need to be cut to the size of the
Spanish polygon.

Let’s start by creating a dataframe with only the roads, as it is always
better to have single-type datasets. This is done in Code Block 8-12.

from shapely.geometry.linestring import LineString
roads_filter = all_data.geometry.apply(lambda x:
type(x) == LineString)
roads = all_data[roads_filter]
roads

Code	Block	8-12 Create a dataframe with only roads

You now obtain a dataset that contains only the roads, just like shown
in Figure 8-20.

Figure	8-20 The dataset resulting from Code Block 8-12. Image by author

The problem is not really clear from the data, so let’s make a plot to
see what is wrong about those LineStrings using the code in Code Block
8-13.

ax = spain.plot(figsize=(15,15), edgecolor='black',
facecolor='none')
spanish_cities.plot(ax=ax, markersize=128)
roads.plot(ax=ax, linewidth=4, edgecolor='grey')
cx.add_basemap(ax, crs=spain.crs)

Code	Block	8-13 Plot the data

This code will generate the map in Figure 8-21, which shows that
there are a lot of parts of road that are still inside Portugal, which we do
not want for our map of Spain.

Figure	8-21 The map resulting from Code Block 8-13. Image by author

Indeed, you can see here that there is one road (from Porto to Lisbon)
that needs to be removed entirely. There are also three roads that start in

Madrid and end up in Portugal, so we need to cut off the Portuguese part
of those roads.

This is all easy to execute using a difference operation within an
overlay again, as is done in the code in Code Block 8-14.

spanish_roads = roads.overlay(portugal, how =
'difference')
spanish_roads

Code	Block	8-14 Difference operation

The result is shown in Figure 8-22.

Figure	8-22 The data resulting from Code Block 8-14. Image by author

You can clearly see that some roads are entirely removed from the
dataset, because they were entirely inside of Portugal. Roads that were
partly in Portugal and partly in Spain were merely altered, whereas roads
that were entirely in Spain are kept entirely.

Let’s now add the roads to the overall map with the country polygon
and the cities, to �inish our �inal map of only Spanish features. This is
done in Code Block 8-15.

ax = spain.plot(figsize=(15,15), edgecolor='black',
facecolor='none')
spanish_cities.plot(ax=ax, markersize=128)
spanish_roads.plot(ax=ax, linewidth=4,
edgecolor='grey')
cx.add_basemap(ax, crs=spain.crs)

Code	Block	8-15 Add the roads to the overall map

The resulting map is shown in Figure 8-23.

Figure	8-23 The map resulting from Code Block 8-15. Image by author

This map shows all of the features reduced to Spain, whereas we
started from a dataset in which we did not even have a Spain polygon.
These examples show the type of work that is very common in spatial
analysis or feature engineering for spatial machine learning. After all,
data is not always clean and perfect and often needs some work to be
usable.

In this chapter, and the previous chapters, you should have found the
basics for working with geospatial data and have enough background to
�ind out how to do some of the other geospatial operations using
documentations and other sources. In the next chapters, the focus will
shift to more mathematics and statistics, as we will be moving into the
chapters on machine learning.

Key	Takeaways
1. The erase operation has multiple interpretations. In spatial analysis,

its de�inition is erasing features or parts of features based on a

spatial overlay with a speci�ied erase feature.
2.

Depending on exact implementation, erasing is basically the same as
the difference operation in overlays, which is one of the set theory
operations.

3.
You can use the difference overlay to erase data from vector datasets
(points, lines, or polygons).

4.

When erasing on points, you will end up erasing or keeping the entire
point, as it is not possible to cut points in multiple parts.

5.

When erasing on lines or polygons, you can erase the complete
feature if it is entirely overlaying with the erase feature, but if the
feature is only partly overlaying, the feature will be altered rather
than removed.

Part	III
Machine	Learning	and	Mathematics

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
J. Korstanje, Machine	Learning	on	Geographical	Data	Using	Python
https://doi.org/10.1007/978-1-4842-8287-8_9

9.	Interpolation
Joos Korstanje1

VIELS MAISONS, France

After having covered the fundamentals of spatial data in the �irst four chapters of this
book, and a number of basic GIS operations in the past four chapters, it is now time to
move on to the last four chapters in which you will see a number of statistics and machine
learning techniques being applied to spatial data.

This chapter will cover interpolation, which is a good entry into machine learning. The
chapter will start by covering de�initions and intuitive explanations of interpolation and
then move on to some example use cases in Python.

What	Is	Interpolation?
Interpolation is a task that is relatively intuitive for most people. From a high-level
perspective, interpolation means to �ill in missing values in a sequence of numbers. For
example, let’s take the list of numbers:

1, 2, 3, 4, ???, 6, 7, 8, 9, 10
Many would easily be able to �ind that the number 5 should be at the place where the

??? is written. Let’s try to understand why this is so easy. If we want to represent this list
graphically, we could plot the value against the position (index) in the list, as shown in
Figure 9-1.

https://doi.org/10.1007/978-1-4842-8287-8_9

Figure	9-1 Interpolating in a list of values. Image by author

When seeing this, we would very easily be inclined to think that this data follows a
straight line, as can be seen in Figure 9-2.

Figure	9-2 The interpolated line. Image by author

As we have no idea where these numbers came from, it is hard to say whether this is
true or not, but it seems logical to assume that they came from a straight line. Now, let’s
try another example. To give you a more complex example, try it with the following:

1, ???, 4, ???, 16
If you are able to �ind it, your most likely guess would be the doubling function, which

could be presented graphically as shown in Figure 9-3.

Figure	9-3 Interpolation with a curved line. Image by author

When doing interpolation, we try to �ind the best estimate for a value in between other
values based on a mathematical formula that seems to �it our data. Although interpolation
is not necessarily a method in the family of machine learning methods, it is a great way to
start discovering the �ield of machine learning. After all, interpolation is the goal of best
guessing some formula to represent data, which is fundamentally what machine learning
is about as well. But more on that in the next chapter. Let’s �irst deep dive into a bit of the
technical details of how interpolation works and how it can be applied on spatial data.

Different	Types	of	Interpolation

Let’s start by covering a number of methods for interpolation that can be used either in
“standard” interpolation or in spatial interpolation. The most straightforward method is
linear interpolation.

Linear	Interpolation
The most straightforward method for interpolation is linear interpolation. Linear
interpolation comes down to drawing a straight line from each point to the next and
estimating the in-between values to be on that line. The graph in Figure 9-4 shows an
example.

Figure	9-4 Linear interpolation. Image by author

Although it seems not such a bad idea, it is not really precise either. The advantage of
linear interpolation is that generally it is not very wrong: you do not risk estimating values
that are way out of bounds, so it is a good �irst method to try.

The mathematical function for linear interpolation is the following:

If you input the value for x at which you want to compute a new y, and the values of x
and y of the point before (x0, y0) and after (x1, y1) your new point, you obtain the new y
value of your point.

Polynomial	Interpolation
Polynomial interpolation is a bit better for estimating such functions, as polynomial
functions can actually be curved. As long as you can �ind an appropriate polynomial
function, you can generally �ind a relatively good approximation. This could be something
like Figure 9-5.

Figure	9-5 Polynomial interpolation. Image by author

A risk of polynomial estimation is that it might be very dif�icult to actually �ind a
polynomial function that �its with your data. If the identi�ied polynomial is highly complex,
there is a big risk of having some “crazy curves” somewhere in your function, which will
make some of your interpolated values very wrong.

It would be a bit much to go into a full theory of polynomials here, but in short, the
formula of a polynomial is any form of a function that contains squared effects, such as

This can complexify up to very complex forms, for example

Many, many other forms of polynomials exist. If you are not aware of polynomials, it
would be worth it checking out some online resources on the topic.

Piecewise	Polynomial	or	Spline
The piecewise polynomial is an alternative that �its multiple simpler polynomials rather
than �itting one polynomial for all the data. This makes that there is a lower risk of making
those very wrong estimates that the regular polynomial introduces.

Although piecewise polynomials are easier in their �inal form, they are not necessarily
easier to estimate. Whereas with �inding a “regular” polynomial the challenge would be a
search of the simplest polynomial that goes at least through all of the points, the problem
with our piecewise polynomial is that there are many potential solutions for this.

However, as we �ix some rules for ourselves, this problem appears quite easy to solve.
In practice, there are good implementations available for �itting things like the cubic
spline and other variants. There is no need reinventing the wheel for this topic, as the
existing solutions are quite well developed. You could look at the Scipy package in Python
for a large availability of such algorithms.

Nearest	Neighbor	Interpolation
Finally, another common standard method for interpolation is nearest neighbor
interpolation. It comes down to estimating a value by �inding its closest neighbor and

copying their value. The advantage of this method is that you are sure that all the values
that you estimate are actually existing at least somewhere in your data, so you are sure
that you are not “inventing” anything that is actually impossible. This comes at the cost of
making your estimates really unsmooth. The example in Figure 9-6 adds nearest neighbor
interpolation to the graph.

Figure	9-6 Adding nearest neighbor interpolation to the graph. Image by author

This nearest neighbor interpolation will assign the value that is the same value as the
closest point. The line shape is therefore a piecewise function: when arriving closer (on
the x axis) to the next point, the interpolated value (y axis) makes a jump to the next value
on the y axis. As you can see, this really isn’t the best idea for the curve at hand, but in
other situations, it can be a good and easy-to-use interpolation method.

From	One-Dimensional	to	Spatial	Interpolation
Now that you have seen some intuitive fundamentals of interpolation, it is time to move
on to spatial interpolation. Of course, the goal of this chapter is to talk about interpolation
of spatial data, and it may be hard to imagine how we move from the previous graphs to
an interpolation in the two-dimensional case of spatial interpolation. Or you can imagine
the previous graphs are side views of spatial interpolated values when you stand on the
ground.

As visuals are generally a great way to understand interpolation methods, let’s start
discussing spatial interpolation with a very common use case: interpolation temperature
over a country that has only a few numbers of of�icial national thermometers. Imagine that
you have a rectangular country on the map in Figure 9-7, with the temperature measures
taken at each point.

Figure	9-7 An interpolation exercise. Image by author

Depending on where we live, we want to have the best appropriate value for ourselves.
In the north of the country, it is 10 degrees Celsius; in the south, it is 0 degree Celsius. Let’s
use a linear interpolation for this, with the result shown in Figure 9-8.

Figure	9-8 The result of the exercise using linear interpolation. Image by author

This linear approach does not look too bad, and it is easy to compute by hand for this
data. Let’s also see what would have happened with a nearest neighbor interpolation,
which is also easy to do by hand. It is shown in Figure 9-9.

Figure	9-9 The result of the exercise using nearest neighbor interpolation. Image by author

The middle part has been left out, as de�ining ties is not that simple, yet you can get the
idea of what would have happened with a nearest neighbor interpolation in this example.

For the moment, we will not go deeper into the mathematical de�initions, but if you
want to go deeper, you will �ind many resources online. For example, you could get started
here: https://towardsdatascience.com/polynomial-interpolation-
3463ea4b63dd. For now, we will focus on applications to geodata in Python.

Spatial	Interpolation	in	Python
In this section, you will see how to apply some of these interpolation methods in Python.
Let’s start by generating some example data points that we can apply this interpolation to.
Imagine we have only data on the following four points. Each data point is a temperature
measurement at the same timestamp, but at a different location. The goal of the exercise
is to use interpolation to estimate these values at unmeasured, in-between locations. The
data looks as shown in Code Block 9-1.

data = { 'point1': {
 'lat': 0,
 'long': 0,
 'temp': 0 },
 'point2': {
 'lat': 10,
 'long': 10,
 'temp': 20 },
 'point3' : {
 'lat': 0,
 'long': 10,
 'temp': 10 },
 'point4': {
 'lat': 10,
 'long': 0,
 'temp': 30 }

https://towardsdatascience.com/polynomial-interpolation-3463ea4b63dd

}

Code	Block	9-1 The data

Now, the �irst thing that we can do is making a dataframe from this dictionary and
getting this data into a geodataframe. For this, the easiest is to make a regular pandas
dataframe �irst, using the code in Code Block 9-2.

import pandas as pd
df = pd.DataFrame.from_dict(data, orient='index')
df

Code	Block	9-2 Creating a dataframe

We see the dataframe being successfully created in Figure 9-10.

Figure	9-10 The data imported in Python. Image by author

As a next step, let’s convert this dataframe into a geopandas geodataframe, while
specifying the geometry to be point data, with latitude and longitude. This is done in Code
Block 9-3.

import geopandas as gpd
from shapely.geometry.point import Point
gdf = gpd.GeoDataFrame(df, geometry=[Point(y,x) for x,y in
zip(list(df['lat']), list(df['long']))])
gdf.plot(markersize=(gdf['temp']+1)*10)

Code	Block	9-3 Converting to geodataframe

The plot that results from this code is shown in Figure 9-11.

Figure	9-11 The plot resulting from Code Block 9-3. Image by author

As you can see in this plot, there are four points with a different size. From a high-level
perspective, it seems quite doable to �ind intermediate values to �ill in between the points.
What is needed to do so, however, is to �ind a mathematical formula in Python that
represents this interpolation and then use it to predict the interpolated values.

Linear	Interpolation	Using	Scipy	Interp2d
The �irst thing that we are going to try is a linear 2D interpolation. For this, we use Scipy
Interp2d, which is a function that returns an interpolation function. Once this function has
been created using the input data, you can actually call it to make predictions for any new
point.

The code in Code Block 9-4 shows how to create the 2D linear interpolation function
using the four input points.

from scipy.interpolate import interp2d
my_interpolation_function = interp2d(df['lat'], df['long'],
df['temp'], kind='linear')

Code	Block	9-4 Creating an interpolation function

Now that we have this function, we can call it on new points. However, we �irst need to
de�ine which points we are going to use for the interpolation. As we have four points in a
square organization, let’s interpolate at the point exactly in the middle and the points that
are in the middle along the sides. We can create this new df using the code in Code Block 9-
5.

new_points = {'point5': {'lat': 0, 'long': 5},
 'point6': {'lat': 5, 'long': 0},
 'point7': {'lat': 5, 'long': 5},

 'point8': {'lat': 5, 'long': 10},
 'point9': {'lat': 10, 'long': 5}
 }
new_df = pd.DataFrame.from_dict(new_points, orient='index')
new_df

Code	Block	9-5 The new dataframe

The resulting dataframe is shown in Figure 9-12.

Figure	9-12 The resulting dataframe. Image by author

The data here only has latitude and longitude, but it does not yet have the estimated
temperature. After all, the goal is to use our interpolation function to obtain these
estimated temperatures.

In Code Block 9-6, you can see how to loop through the new points and call the
interpolation function to estimate the temperature on this location. Keep in mind that this
interpolation function is the mathematical de�inition of a linear interpolation, based on
the input data that we have given.

interpolated_temps = []
for i,row in new_df.iterrows():
 interpolated_temps.append(my_interpolation_function(row['lat'],
row['long'])[0])

new_df['temp'] = interpolated_temps
new_df

Code	Block	9-6 Applying the interpolation

You can see the numerical estimations of these results in Figure 9-13.

Figure	9-13 The estimations resulting from Code Block 9-6. Image by author

The linear interpolation is the most straightforward, and it is clear from those
predictions that they look solid. It would be hard to say whether they are good or not, as
we do not have any ground truth value in interpolation use cases, yet we can say that it is
nothing too weird at least.

Now that we have estimated them, we should try to do some sort of analysis.
Combining them into a dataframe with everything so that we can rebuild the plot is done
in Code Block 9-7.

combi_df = pd.concat([df, new_df])
gdf = gpd.GeoDataFrame(combi_df, geometry=[Point(y,x) for x,y in
zip(list(combi_df['lat']), list(combi_df['long']))])
gdf.plot(markersize=(gdf['temp']+1)*10)

Code	Block	9-7 Put the data together and plot

This code will output the plot shown in Figure 9-14.

Figure	9-14 The plot with interpolated values. Image by author

Even though we do not have an exact metric to say whether this interpolation is good
or bad, we can at least say that the interpolation seems more or less logical to the eye,
which is comforting. This �irst try appears rather successful. Let’s try out some more
advanced methods in the next section, to see how results may differ with different
methods.

Kriging
In the �irst part of this chapter, you have discovered some basic, fundamental approaches
to interpolation. The thing about interpolation is that you can make it as simple, or as
complex, as you want.

Although the fundamental approaches discussed earlier are often satisfactory in
practical results and use cases, there are some much more advanced techniques that we
need to cover as well.

In this second part of the chapter, we will look at Kriging for an interpolation method.
Kriging is a much more advanced mathematical de�inition for interpolation. Although it
would surpass the level of this book to go into too much mathematical detail here, for
those readers that are at ease with more mathematical details, feel free to check out some
online resources like https://en.wikipedia.org/wiki/Kriging and
www.publichealth.columbia.edu/research/population-health-
methods/kriging-interpolation.

Linear	Ordinary	Kriging
There are many forms of Kriging. As often with mathematical methods, the more complex
they are, the more tuning and settings there are to be done. In the coming sections, let’s
look at a number of Kriging solutions that would be in competition with the linear

https://en.wikipedia.org/wiki/Kriging
https://www.publichealth.columbia.edu/research/population-health-methods/kriging-interpolation

interpolation solution given earlier. At the end, we will compare and conclude on the
exercise.

To start, you can use the pykrige library with the Ordinary Kriging functionality, as
shown in Code Block 9-8. As before, you estimate the function �irst and then estimate on
the new_df. This is done in Code Block 9-8.

from pykrige.ok import OrdinaryKriging
my_ok = OrdinaryKriging(df['long'], df['lat'], df['temp'])
zvalues, sigmasq = my_ok.execute('points',
new_df['long'].map(float).values,
new_df['lat'].map(float).values)
new_df['temp'] = zvalues.data
new_df

Code	Block	9-8 Interpolate with Linear Ordinary Kriging

You can see the estimated results in Figure 9-15.

Figure	9-15 The interpolated values with Linear Ordinary Kriging. Image by author

Interestingly, some of these estimated values are not the same at all. Let’s plot them to
see whether there is anything weird or different going on in the plot, using the code in
Code Block 9-9.

combi_df = pd.concat([df, new_df])
gdf = gpd.GeoDataFrame(combi_df, geometry=[Point(y,x) for x,y in
zip(list(combi_df['lat']), list(combi_df['long']))])
gdf.plot(markersize=(gdf['temp']+1)*10)

Code	Block	9-9 Plotting the interpolation

The resulting plot is shown in Figure 9-16.

Figure	9-16 The resulting plot using Linear Ordinary Kriging. Image by author

There is nothing too wrongly estimated if we judge by the plot, so there is no reason to
discount these results. As we have no metric for good or wrong interpolation, this must be
seen as just an alternative estimation. Let’s try to see what happens when using other
settings to Kriging in the next section.

Gaussian	Ordinary	Kriging
In this section, let’s try to change the interpolation model behind the Kriging
interpolation. We can tweak the settings by setting the variogram_model parameter to
another value. In this case, let’s choose “gaussian” to see what happens. This is done in the
code in Code Block 9-10.

my_ok = OrdinaryKriging(df['long'], df['lat'], df['temp'],
variogram_model = 'gaussian')

zvalues, sigmasq = my_ok.execute('points',
new_df['long'].map(float).values,
new_df['lat'].map(float).values)
new_df['temp'] = zvalues.data
new_df

Code	Block	9-10 Gaussian Ordinary Kriging

Now, the results are given in the table in Figure 9-17.

Figure	9-17 The result with Gaussian Ordinary Kriging. Image by author

Interestingly, the estimates for point5 and point9 change quite drastically again! Let’s
make a plot again to see if anything weird is occurring during this interpolation. This is
done in Code Block 9-11.

combi_df = pd.concat([df, new_df])
gdf = gpd.GeoDataFrame(combi_df, geometry=[Point(y,x) for x,y in
zip(list(combi_df['lat']), list(combi_df['long']))])
gdf.plot(markersize=(gdf['temp']+1)*10)

Code	Block	9-11 Plotting the result

The resulting plot is shown in Figure 9-18.

Figure	9-18 The result from Gaussian Ordinary Kriging. Image by author

Again, when looking at this plot, it cannot be said that this interpolation is wrong in
any way. It is different from the others, but just as valid.

Exponential	Ordinary	Kriging
As a �inal test and exercise, let’s try again another setting for the variogram. This time, let’s
use the “exponential” setting to the variogram_model. The code for this is shown in Code
Block 9-12.

my_ok = OrdinaryKriging(df['long'], df['lat'], df['temp'],
variogram_model = 'exponential')

zvalues, sigmasq = my_ok.execute('points',
new_df['long'].map(float).values,
new_df['lat'].map(float).values)
new_df['temp'] = zvalues.data
new_df

Code	Block	9-12 Exponential Ordinary Kriging

The results of this interpolation are shown in Figure 9-19.

Figure	9-19 The result from Exponential Ordinary Kriging. Image by author

Interestingly, again point5 and point9 are the ones that change a lot, while the others
stay the same. For coherence, let’s make the plot of this interpolation as well, using Code
Block 9-13.

combi_df = pd.concat([df, new_df])
gdf = gpd.GeoDataFrame(combi_df, geometry=[Point(y,x) for x,y in
zip(list(combi_df['lat']), list(combi_df['long']))])
gdf.plot(markersize=(gdf['temp']+1)*10)

Code	Block	9-13 Plot the Exponential Ordinary Kriging

The resulting plot is shown in Figure 9-20.

Figure	9-20 The plot from Exponential Ordinary Kriging. Image by author

Again, nothing obvious wrong with this plot, yet its results are again different than
before. It would only make sense to wonder which of them is right. Let’s conclude on this
in the next section.

Conclusion	on	Interpolation	Methods
Interestingly, we have started this chapter with a fairly simple interpolation use case.
While one might be inclined to think that this question is super easy to solve and can even
be solved manually, the variety of possible answers given by the different methods shows
that this is not necessarily a trivial task.

To recap, we have obtained all possible answers in Table 9-1.

Table	9-1 The Results from the Interpolation Benchmark

	 Linear Linear	Kriging Gaussian	Kriging Exponential	Kriging

Point5 5 7.54 3.79 9.68

Point6 15 15 15 15

Point7 15 15 15 15

Point8 15 15 15 15

Point9 25 22.46 26.21 20.32

Even for such a simple interpolation example, we see spectacularly large differences in
the estimations of points 5 (middle bottom in the graph) and 9 (right middle in the graph).

Now the big question here is of course whether we can say that any of those are better
than the others. Unfortunately, when applying mathematical models to data where there is
no ground truth, you just don’t know. You can build models that are useful to your use case,
you can use human and business logic to assess different estimates, and you can use rules

of thumb like Occam’s razor (keep the simplest possible model) for your decision to retain
one model over the other.

Alternatively, you can also turn to supervised machine learning for this. Classi�ication
and regression will be covered in the coming two chapters, and they are also methods for
estimating data points that we don’t know, yet they are focused much more on
performance metrics to evaluate the �it of our data to reality, which is often missing in
interpolation use cases.

In conclusion, although there is not necessarily only one good answer, it is always
useful to have a basic working knowledge of interpolation. Especially in spatial use cases,
it is often necessary to convert data measured at speci�ic points (like temperature
stations and much more) into a more continuous view over a larger two-dimensional
surface (like countries, regions, and the like). You have seen in this chapter that relatively
simple interpolations are already quite ef�icient in some use cases and that there is a vast
complexity to be discovered for those who wanted to go in more depth.

Key	Takeaways
1.

Interpolation is the task of estimating unknown values in between a number of known
values, which comes down to estimating values on unmeasured locations.

2.

We generally de�ine a mathematical function or formula based on the known values
and then use this function to estimate the values that we do not know.

3.

There are many mathematical “base” formulas that you can apply to your points, and
depending on the formula you chose, you may end up with quite different results.

4.

When interpolating, we generally strive to obtain estimates for points of which we do
not have a ground truth value, that is, we really don’t know which value is wrong or
correct. Cross-validation and other evaluation methods can be used and will be
covered in the coming chapters on machine learning.

5.
In the case where multiple interpolation methods give different results, we often need
to de�ine a choice based on common sense, business logic, or domain knowledge.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
J. Korstanje, Machine	Learning	on	Geographical	Data	Using	Python
https://doi.org/10.1007/978-1-4842-8287-8_10

10.	Classi�ication
Joos Korstanje1

VIELS MAISONS, France

With the current chapter, you are now arriving at one of the main parts of
the book about machine learning, namely, classi�ication. Classi�ication is,
next to regression and clustering, one of the three main tasks in machine
learning, and they will all be covered in this book.

Machine learning is a very large topic, and it would be impossible to
cover all of machine learning in just these three chapters. The choice has
been made to do a focus on applying machine learning models to spatial
data. The focus is therefore on presenting interesting and realizing use
cases for machine learning on spatial data while showing how spatial
data can be used as an added value with respect to regular data.

There will not be very advanced mathematical, statistical, nor
algorithmic discussions in the chapters. There are many standard
resources out there for those readers who want to gain a deep and
thorough mathematical understanding of machine learning in general.

The chapter will start with a general introduction of what
classi�ication is, what we can use it for, and some models and tools that
you’ll need for doing classi�ication, and then we’ll dive into a deep spatial
classi�ication use case for the remainder of the chapter. Let’s now start
with some de�initions and introductions �irst.

Quick	Intro	to	Machine	Learning
For those of you who are not very familiar with machine learning, let’s do
a very brief intro into the matter. In very short, the goal of machine
learning is to �ind patterns in data by creating models that can be reused
on new data. There are tons of different models, which are basically

https://doi.org/10.1007/978-1-4842-8287-8_10

mathematical formulas, or algorithms, that are able to identify these
patterns in some way or another.

A big distinction within machine learning is that of supervised vs.
unsupervised models. Unsupervised models are those machine learning
models that do �ind patterns within data, but do not have a ground truth
to measure the performance of them, much like what you have seen in
the previous chapter on interpolation. Two main categories in
unsupervised models are clustering, in which you try to �ind groups
based on the rows of your dataset, and feature reduction, in which you try
to rede�ine your columns in a more optimal way, by analyzing
correlations and other relations between them.

Supervised models have a very different take, as there is a real, true
value to be predicted here. In supervised models, we have a target
variable, which is what we want to predict, and a number of predictor
features, also called independent variables or X variables. There are again
a lot of speci�ic models that try to best capture mathematical information
to determine a predictor function that takes X variables to predict the
target.

Quick	Intro	to	Classi�ication
The targets in supervised machine learning are, in most cases, one of two
types. If the target is a numeric variable, we are going to be in a case of
regression. If the target is a categorical variable, we are in a case of
classi�ication.

Without going into the details, you can intuitively understand that
predicting a number is a bit different from predicting a category. The
�ields are related, and the models are often built on the same basis, but
the adaptations that are necessary to adapt to the target outcome make
that they are considered as two different use cases.

Spatial	Classi�ication	Use	Case
In this chapter, we’ll do a use case of classi�ication. Therefore, we are in
the supervised machine learning category, so this means that we know a
ground truth for our target variable. Also, as we are in classi�ication, the
target variable will be categorical.

The use case of this chapter will present GPS tracking data of 20
hypothetical clients of a big mall. The 20 clients have been asked to install
a tracking app on their phone, and their GPS coordinates have been
collected throughout their mall visit.

It was communicated to the participants that they receive a gift
coupon for a 50% discount on a new restaurant. This was done not just to
incentivize participants to take part in the study, but it was done also
with an ulterior motive. Actually, there is a tracking in place to measure
whether the user has used the coupon, so that we can study the link
between movement patterns and the potential interest in this new
restaurant.

Our classi�ication case will be executed as a marketing study for the
new restaurant. The goal of the study is to use a tracked GPS path to
predict whether a person is interested in this restaurant. The model, if
successful, will be used to implement push noti�ication ads to incentivize
clients to �ind out about this new restaurant.

Sending an ad to a user costs money, so there is a real interest in
�inding out to which client we want to send this ad or not. We need to
build a model that is as good as possible in predicting interest in using
the coupon based on only the sequence of GPS points.

Feature	Engineering	with	Additional	Data
In this use case, there is a heavy weight of feature engineering, which is
done using spatial analysis operations just like those that were covered
in the chapter before this. This shows how the topics are related and how
spatial operations have a great added value for machine learning on
spatial data.

The reason for this is that mere GPS coordinates do not hold much
value to predict anything at all. We need to work with this data and
transcribe it into variables that can actually be used to create a
prediction for coupon interest. Let’s move on to have a look at the data,
so that it becomes clearer what we are working with. For this use case, it
is recommended to use Kaggle notebook environments or any other
environment of your choice.

Importing	and	Inspecting	the	Data
Let’s get started by importing the data. You can use the code in Code
Block 10-1 to do so.

import geopandas as gpd
import fiona
gpd.io.file.fiona.drvsupport.supported_drivers['KML']
= 'rw'
all_data = gpd.read_file('chapter_10_data.kml')
all_data

Code	Block	10-1 Importing the data

When looking at this data, you will see something like Figure 10-1.

Figure	10-1 The data resulting from Code Block 10-1. Image by author

The dataset is a bit more complex than what we have worked with in
previous chapters, so let’s make sure to have a good understanding of
what we are working with.

The �irst row of the geodataframe contains an object called the mall.
This polygon is the one that covers the entire area of the mall, which is
the extent of our study. It is here just for informative purposes, and we
won’t need it during the exercise.

The following features from rows 1 to 7 present areas of the mall.
They are also polygons. Each area can either be one shop, a group of
shops, a whole wing, or whatnot, but they generally regroup a certain
type of store. We will be able to use this information for our model.

The remaining data are 20 itineraries. Each itinerary is represented
as a LineString, that is, a line, which is just a sequence of points that has
been followed by each of the 20 participants in the study. The name of
each of the LineStrings is either Bought Yes, meaning that they have used
the coupon after the study (indicating the product interests them), or
Bought No, indicating that the coupon was not used and therefore that
the client is probably not interested in the product.

Let’s now move on to make a combined plot of all this data to get an
even better feel of what we are working with. This can be done using
Code Block 10-2.

all_data.plot(figsize=(15,15),alpha=0.1)

Code	Block	10-2 Plotting the data

When executing this code, you will end up with the map in Figure 10-
2. Of course, it is not the most visual map, but the goal is here to put
everything together in a quick image to see what is going on in the data.

Figure	10-2 The map resulting from Code Block 10-2

In this map, the most outer light-gray contours are the contours of the
large polygon that sets the total mall area. Within this, you see a number
of smaller polygons, which indicate the areas of interest for our study,
which all have a speci�ic group of store types inside them. Finally, you
also see the lines criss-crossing, which represents the 20 participants of
the study making their movements throughout the mall during their visit.

What we want to do now is to use the information of the store
segment polygons to annotate the trips of each participant. It would be
great to end up with a percentage of time that each participant has spent
in each type of store, so that we can build a model that learns a
relationship between the types of stores that were visited in the mall and
the potential interests in the new restaurant.

As a �irst step toward this model, let’s separate the data to obtain
datasets with only one data type. For this, we will need to separate the
information polygons from the participant itineraries. Using all that you
have seen earlier in the book, that should not be too hard. The code in
Code Block 10-3 shows how to get the info polygons in a new dataset.

info_polygons = all_data.loc[1:7,:]
info_polygons

Code	Block	10-3 Select the info polygons into a separate dataset

The result is the dataset with info_polygons shown in Figure 10-3.

Figure	10-3 The data resulting from Code Block 10-3. Image by author

Let’s extract the itineraries as well, using the code in Code Block 10-4.

itineraries = all_data.loc[8:,:]
itineraries

Code	Block	10-4 Selecting the itineraries

The itineraries dataset is a bit longer, but it looks as shown in Figure
10-4 (truncated version).

Figure	10-4 Truncated version of the data from Code Block 10-4

Spatial	Operations	for	Feature	Engineering
Now that we have good overview of this dataset, it is time to start doing
the spatial operation needed to add the information of participants’
presence in each of the locations. For this, we are going to need some sort
of spatial overlay operation, as you have seen in the earlier parts of this
book.

To do the overlay part, it is easier to do this point by point, as we have
lines that are passing through many of the interest areas. If we were to do
the operation using lines, we would end up needing to cut the lines
according to the boundaries of the polygons and use line length for
estimating time spent in the store section.

If we cut the lines into points, we can do a spatial operation to �ind the
presence of each point and then simply count, for each participant, the
number of points in each store section. If the points are collected on the
basis of equal frequency, the number of points is an exact representation
of time.

The reason that we can do without the line is that we do not care
about direction or order here. After all, if we wanted to study the order of
visits to each store section, we would need to keep information about the
sequence. The line is able to do this, whereas the point data type is not.

In this section, you can see what a great advantage it is to master
Python for working on geodata use cases. Indeed, it is very advantageous
of Python that we have liberty to convert geometry objects to strings and
do loops through them which would potentially be way more complex in
more click button, precoded, GIS tools.

The disadvantage may be that it is a little hard to get your head
around sometimes, but the code in Code Block 10-5 walks you through an
approach to get the data from a wide data format (one line per client) to a
long data format (one row per data point/coordinate).

import pandas as pd
from shapely.geometry.point import Point

results = []

split the lines into points
for i, row in itineraries.iterrows():
 # making the line string into a list of the
coordinates as strings and removing redundant

information
 list_of_points_extracted =
str(row['geometry']).strip('LINESTRING Z
(').strip(')').split(',')
 list_of_points_extracted = [point[:-2] for point
in list_of_points_extracted]

 # convert lat and long into floats
 list_of_points_extracted = [Point([float(y) for
y in x.strip(' ').split(' ')]) for x in
list_of_points_extracted]
 list_of_points_extracted = [[i, row.Name] + [x]
for x in list_of_points_extracted]
 results += list_of_points_extracted

results_df = pd.DataFrame(results)
results_df.columns = ['client_id', 'target',
'point']
results_df

Code	Block	10-5 Get the data from a wide data format to a long data format

The result of this code is the data in a long format: one row per point
instead of one row per participant. A part of the data is shown in Figure
10-5.

Figure	10-5 A part of the data resulting from Code Block 10-5. Image by author

This result here is a pandas dataframe. For doing spatial operations,
as you know by now, it is best to convert this into a geodataframe. This
can be done using the code in Code Block 10-6.

import geopandas as gpd
gdf = gpd.GeoDataFrame(results_df, geometry='point')
gdf

Code	Block	10-6 Convert to geodataframe

Your object gdf is now georeferenced. We can move on to joining this
point dataset with the store information dataset, using a spatial join. This
spatial join is executed using the code in Code Block 10-7.

joined_data = gpd.sjoin(gdf, info_polygons,
how='left')
joined_data

Code	Block	10-7 Join the geodataframe to the info_polygons

The joined data will look as shown in Figure 10-6.

Figure	10-6 The data resulting from Code Block 10-7. Image by author

You can see that for most points the operation has been successful.
For a number of points, however, it seems that NA, or missing values, has
been introduced. This is explained by the presence of points that are not
overlapping with any of the store information polygons and therefore
having no lookup information. It would be good to do something about
this. Before deciding what to do with the NAs, let’s use the code in Code
Block 10-8 to count the number of each client for which there is no
reference information.

inspect NA
joined_data['na'] = joined_data.Name.isna()
joined_data.groupby('client_id').na.sum()

Code	Block	10-8 Inspect NA

The result is shown in Figure 10-7.

Figure	10-7 The result of Code Block 10-8. Image by author

The number of nonreferenced points differs for each participant, but
it never goes above three. We can therefore conclude that there is really

no problem in just discarding the data that has no reference. After all,
there is very little of it, and there is no added information in this data.

The code in Code Block 10-9 shows how to remove the rows of data
that have missing values.

drop na
joined_data = joined_data.dropna()
joined_data

Code	Block	10-9 Drop NAs

The resulting dataframe is a bit shorter: 333 rows instead of 359, as
you can see in Figure 10-8.

Figure	10-8 The dataset without NAs

We now have a dataframe with explanatory information that will help
us to predict coupon usage.

Reorganizing	and	Standardizing	the	Data
Now that all the needed information is there for building our
classi�ication model, we still need to work on the correct organization of

this data. After all, the model interface in Python needs the data in a
correct format.

In this section, we will take the spatially joined dataframe and return
to a wide format, in which we again obtain a dataframe with one row per
participant. Instead of having a coordinate LineString, we now want to
have the participant’s presence in each of the categories. We will obtain
this simply by counting, for each participant, the number of points in
each of the store categories. This is obtained using a groupby, which is
shown in Code Block 10-10.

location_behavior =
joined_data.pivot_table(index='client_id',
columns='Name',
values='target',aggfunc='count').fillna(0)
location_behavior

Code	Block	10-10 The groupby to obtain location behavior

The result of this groupby operation is shown in Figure 10-9.

Figure	10-9 The result of Code Block 10-10. Image by author

This grouped data already seems very usable information for
understanding something about each of the clients. For example, we can
see that the participant with client_id 21 has spent a huge amount of time
in the High Fashion section. Another example is client_id 9, who seemed
to have only gone to the supermarket.

Although this dataset is very informative, there is still one problem
before moving on to the classi�ication model. When looking at the
category electronics, we can see as an example client_id 17 being the
largest value inside electronics. If we look further into client_id 17,

however, we see that electronics is not actually the largest category for
this participant.

There is a bias in the data that is due to the fact that not all
participants have the same number of points in their LineString. To solve
this, we need to standardize for the number of points, which can be done
using the code in Code Block 10-11.

standardize
location_behavior = location_behavior.div(
location_behavior.sum(axis=1), axis=0)
location_behavior

Code	Block	10-11 Standardize the data

The standardized output is shown in Figure 10-10.

Figure	10-10 The data resulting from Code Block 10-11. Image by author

Modeling
Let’s now keep the data this way for the model – for inputting the data
into the model. Let’s move away from the dataframe format and use the
code in Code Block 10-12 to convert the data into numpy arrays.

X = location_behavior.values
X

Code	Block	10-12 Convert into numpy

The X array looks something like Figure 10-11.

Figure	10-11 The array resulting from Code Block 10-12. Image by author

You can do the same to obtain an array for the target, also called y.
This is done in Code Block 10-13.

y = itineraries.Name.values
y

Code	Block	10-13 Get y as an array

The y, or target, now looks as shown in Figure 10-12.

Figure	10-12 The y array. Image by author

The next step in modeling is building a train-test-split. A train-test-
split in machine learning comes down to splitting your data in two, based
on the rows, and using only part of your data for building the model. The
part that you use for building the model is the train set, and the part that
you do not use here is the test set.

The test set is important to keep apart, as machine learning models
have a tendency to learn relationships that use X to predict y which are
perfectly valid on the data that has been seen by the model, but that are
not valid on any new data. The process is called over�itting to the train
set.

When training a model on a train set and evaluating it on a dataset
that was not seen by the model during the training phase, we make sure
that the model evaluation is fair. We are certain that the model is not
over�itted to the test data, as it was never used in the �itting (training)
process.

The code in Code Block 10-14 executes a strati�ied train-test-split.
Strati�ication is a form a sampling that forces the distribution of a
speci�ied variable to be the same in train and test. After all, there would
be a risk that all the coupon users are in train, and then the test set would
not be evaluating the performance on coupon users at all. Strati�ication
forces the same percentage of coupon users in both train and test, which
promotes fair evaluation.

stratified train test split
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test =
train_test_split(X, y, test_size=0.33,
random_state=42, stratify=y)

Code	Block	10-14 Strati�ied train-test-split

After this step, you end up with four datasets: X_train and y_train are
the parts of X and y that we will use for training, and X_test and y_test will
be used for evaluation.

We now have all the elements to start building a model. The �irst
model that we are going to build here is the logistic regression. As we do
not have tons of data, we can exclude the use of complex models like
random forests, xgboost, and the like, although they could de�initely
replace the logistic regression if we had more data in this use case.
Thanks to the easy-to-use modeling interface of scikit-learn, it is really
easy to replace one model by another, as you’ll see throughout the
remainder of the example.

The code in Code Block 10-15 �irst initiates a logistic regression and
then �its the model using the training data.

logistic regression
from sklearn.linear_model import LogisticRegression

my_lr = LogisticRegression()
my_lr.fit(X_train, y_train)

Code	Block	10-15 Logistic regression

The object my_lr is now a �itted logistic regression which basically
means that its coef�icients have been estimated based on the training
data and they have been stored inside the object. We can now use the
my_lr object to make predictions on any external data that contains the
same data as the one that was present in X_train.

Luckily, we have kept apart X_test so that we can easily do a model
evaluation. The �irst step in this is to make the predictions using the code
in Code Block 10-16.

preds = my_lr.predict(X_test)
preds

Code	Block	10-16 Prediction

The array contains the predictions for each of the rows in X_test, as
shown in Figure 10-13.

Figure	10-13 The resulting predictions. Image by author

We do have the actual truth for these participants as well. After all,
they are not really new participants, but rather a subset of participants of
which we know whether they used the coupon that we chose to keep
apart for evaluation. We can compare the predictions to the actual
ground truth, using the code in Code Block 10-17.

indeed one error for the log reg
pd.DataFrame({'real': y_test, 'pred': preds})

Code	Block	10-17 Convert the errors and ground truth to a dataframe

The resulting comparison dataframe is shown in Figure 10-14.

Figure	10-14 The dataframe for error analysis. Image by author

The test set is rather small in this case, and we can manually conclude
that the model is actually predicting quite well. In use cases with more
data, it would be better to summarize this performance using other
methods. One great way to analyze classi�ication models is the confusion
matrix. It shows in one graph all the data that is correctly predicted, but
also which are wrongly predicted and in that case which errors were
made how many times. The code in Code Block 10-18 shows how to
create such a confusion matrix for this use case.

from sklearn.metrics import confusion_matrix,
ConfusionMatrixDisplay

conf_mat = confusion_matrix(y_test, preds,
normalize=None)
conf_mat_plot = ConfusionMatrixDisplay(conf_mat,
display_labels = set(y_test))
conf_mat_plot.plot()

Code	Block	10-18 Analyze the prediction errors

The resulting plot is shown in Figure 10-15.

Figure	10-15 The plot resulting from Code Block 10-18. Image by author

In this graph, you see that most predictions were correct and only one
mistake was made. This mistake was a participant that did not buy,
whereas the model predicted that he was a buyer with the coupon.

Model	Benchmarking
The model made one mistake, so we can conclude that it is quite a good
model. However, for completeness, it would be good to try out another
model. Feel free to test out any classi�ication model from scikit-learn, but
due to the relatively small amount of data, let’s try out a decision tree
model here. The code in Code Block 10-19 goes through the exact same
steps as before but simply with a different model.

from sklearn.tree import DecisionTreeClassifier
my_dt = DecisionTreeClassifier()

my_dt.fit(X_train, y_train)
preds = my_dt.predict(X_test)
pd.DataFrame({'real': y_test, 'pred': preds})

Code	Block	10-19 Model benchmarking

The resulting dataframe for evaluation is shown in Figure 10-16.

Figure	10-16 The resulting dataframe from Code Block 10-19. Image by author

Again, thanks to the small dataset size, it is easy to interpret and
conclude that the model is worse, as it has made two mistakes, whereas
the logistic regression only made one mistake. For coherence, let’s
complete this with a confusion matrix analysis as well. This is done in
Code Block 10-20.

conf_mat = confusion_matrix(y_test, preds,
normalize=None)

conf_mat_plot = ConfusionMatrixDisplay(conf_mat,
display_labels = set(y_test))
conf_mat_plot.plot()

Code	Block	10-20 Plot the confusion matrix

The result is shown in Figure 10-17 and indeed shows two errors.

Figure	10-17 The result from the Decision Tree model

There are two errors, both cases of participants that did not buy in
reality. It seems that people that did not buy are a little bit harder to
detect than the opposite, even though more evidence would be needed to
further investigate this.

Key	Takeaways
1. Classi�ication is an area in supervised machine learning that deals

with models that learn how to use independent variables to predict a
categorical target variable.

2.
Feature engineering together with spatial operations can be used to
get spatial data into a machine learning format. It is important to end
up with variable de�initions that will be useful for the classi�ication
task at hand.

3.
Train-test-splits are necessary for model evaluation, as models tend
to over�it on the training data.

4.

The confusion matrix is a great tool for evaluating classi�ication
models’ performances.

5.

Model benchmarking is the task of using multiple different machine
learning models on the same task, so that the best performing model
can be found and retained for the future.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
J. Korstanje, Machine	Learning	on	Geographical	Data	Using	Python
https://doi.org/10.1007/978-1-4842-8287-8_11

11.	Regression
Joos Korstanje1

VIELS MAISONS, France

In the previous two chapters, you have learned about the fundamentals of machine
learning use cases using spatial data. You have �irst seen several methods of
interpolation. Interpolation was presented as an introduction to machine learning,
in which a theory-based interpolation function is de�ined to �ill in unknown values of
the target variable.

The next step moved from this unsupervised approach to a supervised approach,
in which we build models to predict values of which we have ground truth values. By
applying a train-test-split, this ground truth is then used to compute a performance
metric.

The previous chapter showed how to use supervised models for classi�ication. In
classi�ication models, unlike with interpolation, the target variable is a categorical
variable. The shown example used a binary target variable, which classi�ied people
into two categories: buyers and nonbuyers.

In this chapter, you will see how to build supervised models for target variables
that are numeric. This is called regression. Although regression, just like
interpolation, is used to estimate a numeric target, the methods are actually
generally closer to the supervised classi�ication methods.

In regression, the use of metrics and building models with the best performance
on this metric will be essential as it was in classi�ication. The models are adapted for
taking into account a numeric target variable, and the metrics need to be chosen
differently to take into account the fact that targets are numeric.

The chapter will start with a general introduction of what regression models are
and what we can use them for. The rest of the chapter will present an in-depth
analysis of a regression model with spatial data, during which numerous theoretical
concepts will be presented.

Introduction	to	Regression
Although the goal of this book is not to present a deep mathematical content on
machine learning, let’s start by exploring the general idea behind regression models
anyway. Keep in mind that there are many resources that will be able to �ill in this

https://doi.org/10.1007/978-1-4842-8287-8_11

theory and that the goal of the current book is to present how regression models can
be combined with spatial data analysis and modeling.

Let’s start this section by considering one of the simplest cases of regression
modeling: the simple linear regression. In simple linear regression, we have one
numeric target variable (y variable) and one numeric predictor variable (X variable).

In this example, let’s consider a dataset in which we want to predict a person’s
weekly weight loss based on the number of hours that a person has worked out in
that same week. We expect to see a positive relationship between the two. Figure
11-1 shows the weekly weight loss plotted against the weekly workout hours.

Figure	11-1 Plot of the example data. Image by author

This graph shows a clear positive relationship between workout and weight loss.
We could �ind the mathematical de�inition of the straight line going through those
points and then use this mathematical formula as a model to estimate weekly weight
loss as a function of the number of hours worked out. This can be shown graphically
in Figure 11-2.

Figure	11-2 The simple linear regression added to the graph. Image by author

The mathematical form of this linear regression model is the following:

y	=	a	*	x	+	b
which would translate to the following for this example:

Weight_Loss	=	a	*	Workout	+	b
Mathematical procedures to determine the best-�itting values for a and b exist and
can be used to estimate this model. The exact mathematics behind this will be left
for further reading as to not go out of scope for the current book. However, it is
important to understand the general idea behind estimating such a model.

It is also important to consider which next steps are possible, so let’s spend some
time to consider those. Firstly, the current model is using only a single explanatory
variable (workout), which is not really representative of how one would go about
losing weight.

In reality, one could consider that the food quantity is also a very important
factor in losing weight. This would need an extension of the mathematical formula to
become something like the following:

Weight_Loss	=	a	*	Workout	+	b	*	CaloriesEaten	+	c
In this case, the mathematics behind the linear regression would need to �ind best
values for three coef�icients: a, b, and c. This can go on by adding more variables and
more coef�icients.

Until here, we have �irstly discussed the simple linear regression, followed by
linear regression more generally. Although linear regression is often great for �itting
regression models, there are many other mathematical and algorithmic functions
that can be used.

Examples of other models are Decision Trees, Random Forest, and Boosting
models. Deep down, each of them has their own de�inition of a basic model, in which
the data can be used to �it the model (the alternative of estimating the coef�icients in
the linear model). Many reference works exist for those readers wanting to gain in-
depth mathematical insights into the exact workings of those models.

For now, let’s move on to a more applied vision by working through a regression
use case using spatial data.

Spatial	Regression	Use	Case
The remainder of this chapter will walk you through a number of iterations on a
supervised machine learning use case. In practice, building machine learning models
generally happens in multiple steps and iterations. This chapter is divided into
multiple parts in order to represent this as close to reality as possible.

The goal of the model is to estimate the price that we should charge for an Airbnb
location in the center of Amsterdam. Imagine that you live in Amsterdam and that
you want to rent out your apartment on Airbnb for the best price, and you have
collected some data to �ind out how to decide on the price.

The target variable of this use case is the price, and there are numerous variables
that we will use as predictor variables. Firstly, there is data on the maximum number
of guests that are allowed in the apartment. Secondly, data has been collected to note
whether or not a breakfast is included in the price of the apartment. Let’s start by
importing and preparing the data.

Importing	and	Preparing	Data
In this section, we will import and prepare the data. There are two �iles in the
dataset:
– The geodata in a KML �ile
– An Excel �ile with price and prediction variables for each apartment

The geodataset can be imported using geopandas and Fiona, just as you have
seen in earlier chapters of this book. This is done in Code Block 11-1.

import geopandas as gpd
import fiona

gpd.io.file.fiona.drvsupport.supported_drivers['KML'] = 'rw'
geodata = gpd.read_file('chapter 11 data.kml')
geodata.head()

Code	Block	11-1 Importing the data

The geodata, once imported, is shown in Figure 11-3.

Figure	11-3 The data resulting from Code Block 11-1. Image by author

As you can see, the dataset contains only two variables:
– The Name contains the identi�ier of each point.
– The Point contains the coordinates of each apartment.

The other variables are in the Excel �ile, which you can import using the code in
Code Block 11-2.

import pandas as pd
apartment_data = pd.read_excel('house_data.xlsx')
apartment_data.head()

Code	Block	11-2 Importing the house data

This second dataset is shown in Figure 11-4.

Figure	11-4 The house data. Image by author

As you can see from this image, the data contains the following variables:
– Apt ID: The identi�ier of each apartment

– Price: The price of each apartment on Airbnb
– MaxGuest: The maximum number of guests allowed in the apartment
– IncludesBreakfast: 1 if breakfast is included and 0 otherwise

The Apt ID is not in the same format as the identi�ier in the geodata. It is
necessary to convert the values in order to make them correspond. This will allow us
to join the two datasets together in a later step. This is done using the code in Code
Block 11-3.

apartment_data['Apt ID'] = apartment_data['Apt
ID'].apply(lambda x: 'Apt ' + str(x))
apartment_data.head()

Code	Block	11-3 Convert apartment IDs

After this operation, the dataset now looks as shown in Figure 11-5.

Figure	11-5 The data resulting from Code Block 11-3. Image by author

Now that the two datasets have an identi�ier that corresponds, it is time to start
the merge operation. This merge will bring all columns into the same dataset, which
will be easier for working with the data. This merge is done using the code in Code
Block 11-4.

merged_data = geodata.merge(apartment_data, left_on='Name',
right_on='Apt ID')
merged_data.head()

Code	Block	11-4 Merging the two datasets

You can see the resulting dataframe in Figure 11-6.

Figure	11-6 The merged data. Image by author

We now have all the columns inside the same dataframe. This concludes the data
preparation phase. As a last step, let’s do a visualization of the apartment locations
within Amsterdam, to get a better feeling for the data. This is done using the code in
Code Block 11-5.

import contextily as cx

plotting all data
ax = merged_data.plot(figsize=(15,15), edgecolor='black',
facecolor='none')

adding a contextily basemap
cx.add_basemap(ax, crs=merged_data.crs)

Code	Block	11-5 Map of the apartments

The resulting map is shown in Figure 11-7.

Figure	11-7 The map resulting from Code Block 11-5. Image by author using contextily source data and image as
referenced in the image

You can see that the apartments used in this study are pretty well spread
throughout the center of Amsterdam. In the next section, we will do more in-depth
exploration of the dataset.

Iteration	1	of	Data	Exploration
In this �irst iteration of data exploration, let’s look at how we could use the
nongeographical data for a regression model. This will yield a comparable approach
as the example that was given in the theoretical part earlier in this chapter.

To start the exploration, let’s make a histogram of the prices of our apartments.
The histogram can be created using the code in Code Block 11-6.

import matplotlib.pyplot as plt
plt.hist(merged_data['Price'])

Code	Block	11-6 Creating a histogram

The result of this histogram is shown in Figure 11-8.

Figure	11-8 Histogram of the prices. Image by author

This histogram shows us that the prices are all between 90 and 170, with the
majority being at 130. The data does not seem to follow a perfectly normal
distribution, although we do see more data points being closer to the center than
further away.

If we would need to give a very quick-and-dirty estimation of the most
appropriate estimation for the price of our Airbnb, we could simply use the average
price of Airbnbs in the center of Amsterdam. The code in Code Block 11-7 computes
this mean.

if we had no info to segment at all, our best guest would
be to predict the mean
merged_data['Price'].mean()

Code	Block	11-7 Compute the mean

The result is 133.75, which tells us that setting this price would probably be a
more or less usable estimate if we had nothing more precise. Of course, as prices
range from 90 to 170, we could be either:
– Lose money due to underpricing: If our Airbnb is actually worth 170 and we

choose to price it at 133.75, we would be losing the difference (170 – 133.75) each
night.

– Lose money due to overpricing: If our Airbnb is actually worth 90 and we choose
to price it at 133.75, we will probably have a very hard time �inding guests, and
our booking number will be very low.
Clearly, it would be very valuable to have a better understanding of the factors

in�luencing Airbnb price so that we can �ind the best price for our apartment.
As a next step, let’s �ind out how the number of guests can in�luence Airbnb

prices. The code in Code Block 11-8 creates a scatter plot of Price against MaxGuests
to visually inspect relationships between those variables.

however we may use additional information to make this
estimate more fitting
plt.scatter(merged_data['MaxGuests'], merged_data['Price'])

Code	Block	11-8 Create a scatter plot

Although the trend is less clear than the one observed in the theoretical example
in the beginning of this chapter, we can clearly see that higher values on the x axis
(MaxGuests) generally have higher values on the y axis (Price). Figure 11-9 shows
this.

Figure	11-9 The scatter plot of Price against MaxGuests. Image by author

The quality of a linear relationship can also be measured using a more
quantitative approach. The Pearson correlation coef�icient is a sort of score between
–1 and 1 that gives this indication. A value of 0 means no correlation, a value close to
–1 means a negative correlation between the two, and a value close to 1 means a
positive correlation between the variables.

The correlation coef�icient can be computed using the code in Code Block 11-9.

import numpy as np
np.corrcoef(merged_data['MaxGuests'], merged_data['Price'])

Code	Block	11-9 Compute the correlation coef�icient

This will give you the correlation matrix as shown in Figure 11-10.

Figure	11-10 The correlation coef�icient. Image by author

The resulting correlation coef�icient between MaxGuests and Price is 0.453. This
is a fairly strong positive correlation, indicating that the number of guests has a
strong positive impact on the price that we can ask for an Airbnb. In short, Airbnbs
for more people should ask a higher price, whereas Airbnbs for small number or
guests should price lower.

As a next step, let’s see whether we can also use the variable IncludesBreakfast
for setting the price of our Airbnb. As the breakfast variable is categorical (yes or
no), it is better to use a different technique for investigating this relationship. The
code in Code Block 11-10 creates a boxplot to answer this question.

import seaborn as sns
sns.boxplot(x='IncludesBreakfast',y='Price',data=merged_data)

Code	Block	11-10 Create a boxplot

The resulting boxplot is shown in Figure 11-11.

Figure	11-11 The resulting boxplot. Image by author

This boxplot shows us that Airbnbs that propose a breakfast are generally able to
ask a higher price than Airbnbs that do not propose one. Depending on whether you
propose a breakfast, you should price your apartment accordingly.

Iteration	1	of	the	Model
The insights from the previous section will already be very useful elements for an
apartment owner. However, they remain a more general advice rather than an exact
numerical estimation of the price that we’d need to set. In this section, we’ll build a
�irst version of a machine learning model to set this price exactly based on the
variables breakfast and MaxGuest. As a �irst set, let’s set X and y as variables for
modeling. This is done in Code Block 11-11.

X = merged_data[['IncludesBreakfast', 'MaxGuests']]
y = merged_data['Price']

Code	Block	11-11 Creating X and y objects

We will use a linear model for this phase of modeling. The scikit-learn
implementation of the linear model can be estimated using the code in Code Block
11-12.

first version lets just do a quick and dirty non geo model
from sklearn.linear_model import LinearRegression
lin_reg_1 = LinearRegression()
lin_reg_1.fit(X, y)

Code	Block	11-12 Linear regression

Now that the model has been �itted, we have the mathematical de�inition (with
the estimated coef�icients) inside our linear regression object.

Interpretation	of	Iteration	1	Model
To interpret what this model has learned, we can inspect the coef�icients. The code in
Code Block 11-13 shows how to see the coef�icients that the model has estimated.

print('When no breakfast and 0 Max Guests then price is
estimated at: ', lin_reg_1.intercept_)

print('Adding breakfast adds to the price: ',
lin_reg_1.coef_[0])

print('Each additional Max Guests adds to the price: ',
lin_reg_1.coef_[1])

Code	Block	11-13 Print the interpretation of the linear model

This code results in the following output:
– When no breakfast and 0 Max Guests then price is estimated at:

103.1365444728616
– Adding breakfast adds to the price: 16.615515771525995
– Each additional Max Guests adds to the price: 7.254546746234728

These coef�icients give a precise mathematical estimation of the insights that we
obtained in the previous section. Although these numbers seem very precise, this
does not mean that they are actually correct. It is important to de�ine a metric and
measure whether this model is any good.

In the following, we will compute the R2 score, which is a regression metrics that
generally falls between 0 (model has no value) and 1 (perfect model). Values can
sometimes fall below 0, indicating that the model has no value at all.

The R2 score can be computed on all data, but this is not the preferred way for
estimating model performance. Machine learning models tend to learn very well on
the data that was seen during training (�itting), without necessarily generalizing
very well. A solution for this is to split the data in a training set (observations that
are used for the training/estimation) and a test set that is used for model evaluation.

The code in Code Block 11-14 splits that initial data into a training and a test set.

Evaluate this model a bit better with train test
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.33, random_state=42)

Code	Block	11-14 Split the data in train and test

Let’s now �it the model again, but this time only on the training data. This is done
in Code Block 11-15.

lin_reg_2 = LinearRegression()
lin_reg_2.fit(X_train, y_train)

Code	Block	11-15 Fit the model on the train data

To estimate the performance, we use the estimated model (in this case, the
coef�icients and the linear model formula) to predict estimate prices on the test
data. This is done in Code Block 11-16.

pred_reg_2 = lin_reg_2.predict(X_test)

Code	Block	11-16 Predict on the test set

We can use these predicted values together with the real, known prices of the test
set to compute the R2 scores. This is done in Code Block 11-17.

from sklearn.metrics import r2_score
r2_score(y_test, pred_reg_2)

Code	Block	11-17 Compute the R2 score

The resulting R2 score is 0.1007. Although not a great result, the score shows that
the model has some predictive value and would be a better segmentation than using
the mean for pricing.

Iteration	2	of	Data	Exploration
In this second iteration, we will add the geographical data into the exploration and
model. After all, location is important when booking an Airbnb, and this will probably
be translated in price. Let’s start by looking into more detail into these features of
the dataset. The code in Code Block 11-18 creates variables speci�ically for latitude
and longitude by extracting this from the geometry column.

add the geo data and see whether it improves thing
merged_data['long'] = merged_data['geometry'].apply(lambda
x: x.x)
merged_data['lat'] = merged_data['geometry'].apply(lambda x:
x.y)
merged_data.head()

Code	Block	11-18 Add the geographic data

The resulting dataframe is shown in Figure 11-12.

Figure	11-12 The dataset resulting from Code Block 11-18. Image by author

Let’s see how latitude and longitude are related to the price by making scatter
plots of price vs. latitude and price vs. longitude. The �irst scatter plot is created in
Code Block 11-19.

plt.scatter(merged_data['lat'], merged_data['Price'])

Code	Block	11-19 Create the scatter plot

The resulting scatter plot is shown in Figure 11-13.

Figure	11-13 The scatter plot resulting from Code Block 11-19. Image by author

There does not seem to be too much of a trend in this scatter plot. It seems that
prices are ranging between 90 and 170, and that is not different for any other
latitude. Let’s use the code in Code Block 11-20 to check whether this is true for
longitude as well.

plt.scatter(merged_data['long'], merged_data['Price'])

Code	Block	11-20 Create a scatter plot with longitude

The resulting scatter plot is shown in Figure 11-14.

Figure	11-14 The scatter plot of price vs. longitude. Image by author

Interestingly, the relationship between price and longitude is much stronger. It
seems that higher longitudes generally have a lower price than lower longitudes.

These two scatter plots do not really capture location. After all, we could easily
imagine that relationships with latitude and longitude are not necessarily linear. It
would be weird to expect that the more you go to the east, the lower your price, is a
rule that always holds. It is more likely that there are speci�ic high-value and low-
value areas within the overall area. In the following code, we create a visualization
that plots prices based on latitude and longitude at the same time.

The �irst step in creating this visualization is to convert price into a variable that
can be used to set point size for the apartments. This requires our data to be scaled
into a range that is more appropriate for plotting, for example, setting the cheapest
apartments to a point size of 16 and the most expensive ones to a point size of 512.
This is done in Code Block 11-21.

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range=(16, 512))
merged_data[['MarkerSize']] =
scaler.fit_transform(merged_data[['Price']])

Code	Block	11-21 Apply a MinMaxScaler

We can now use this size setting when creating the scatter plot. This is done in
Code Block 11-22.

plt.scatter(merged_data['long'], merged_data['lat'],
s=merged_data['MarkerSize'], c='none', edgecolors='black')

Code	Block	11-22 Create a map with size of marker

The resulting visualization is shown in Figure 11-15.

Figure	11-15 The resulting scatter plot

This graph shows that there are no linear relationships, but that we could expect
some areas to be learned that have generally high or generally low prices. This would
mean that we may need to change for a nonlinear model to �it this reality better.

Iteration	2	of	the	Model
Although the previous exploration just told us that the go-to model is probably
nonlinear, let’s do a �inal pass with a linear model. This will give us a good benchmark
R2 score for evaluating the remaining trials. This is done in Code Block 11-23.

add features
X2 = merged_data[['IncludesBreakfast', 'MaxGuests', 'lat',
'long']]
y = merged_data['Price']

train test split
X2_train, X2_test, y_train, y_test = train_test_split(X2, y,
test_size=0.33, random_state=42)

build the model
lin_reg_3 = LinearRegression()
lin_reg_3.fit(X2_train, y_train)

evaluate the model
pred_reg_3 = lin_reg_3.predict(X2_test)
print(r2_score(y_test, pred_reg_3))

Code	Block	11-23 Model iteration 2

The R2 score that is obtained by this model is 0.498. This is actually quite an
improvement compared to the �irst iteration (which was at R2 of 0.10). This gives
con�idence in moving on to the tests for nonlinear model in the next section.

Iteration	3	of	the	Model
As already described in the introduction, there are many alternative models that we
could use in the next iterations. In order to keep a model that is easy to interpret, we
will use a Decision Tree in this step. Feel free to try out more complex models from
the scikit-learn library, which will be just as easy to plug into this code as the
following example. The code for the DecisionTreeRegressor is shown in Code Block
11-24.

from sklearn.tree import DecisionTreeRegressor

build the model
dt_reg_4 = DecisionTreeRegressor()
dt_reg_4.fit(X2_train, y_train)

evaluate the model
pred_reg_4 = dt_reg_4.predict(X2_test)
print(r2_score(y_test, pred_reg_4))

Code	Block	11-24 Model iteration 3

The score that this model obtains is –0.04. Unexpectedly, we have a much worse
result than in the previous step. Be careful here, as the DecisionTree results will be
different for each execution due to randomness in the model building phase. You will
probably have a different result than the one presented here, but if you try out
different runs, you will see that the average performance is worse than the previous
iteration.

The DecisionTreeRegressor, just like many other models, can be tuned using a
large number of hyperparameters. In this iteration, no hyperparameters were
speci�ied, which means that only default values were used.

As we have a strong intuition that nonlinear models should be able to obtain
better results than a linear model, let’s play around with hyperparameters in the
next iteration.

Iteration	4	of	the	Model
Max_depth is an important hyperparameter for the DecisionTreeRegressor. If you do
not specify a max depth, the estimated decision tree can become very complex. Since
the score in the previous iteration was so much worse than the linear model, we
could expect that our decision tree became too complex. The loop in Code Block 11-
25 tests out different values for max_depth, which will allow us to see whether this
would give a better performing model.

tune this model a little bit

for max_depth in range(1,11):

 # build the model
 dt_reg_5 = DecisionTreeRegressor(max_depth=max_depth)
 dt_reg_5.fit(X2_train, y_train)

 # evaluate the model
 pred_reg_5 = dt_reg_5.predict(X2_test)
 print(max_depth, r2_score(y_test, pred_reg_5))

Code	Block	11-25 Tuning the model with max_depth

The resulting output is shown in Figure 11-16.

Figure	11-16 The result of the model tuning loop. Image by author

In this output, you can see that the max_depth of 3 has resulted in an R2 score of
0.54, much better than the result of –0.04. Tuning on max_depth has clearly had an
important impact on the model’s performance. Many other trials and iterations
would be possible, but that is left as an exercise. For now, the DecisionTreeRegressor
with max_depth = 3 is retained as the �inal regression model.

Interpretation	of	Iteration	4	Model
As a �inal step for this use case, let’s have a closer look at what is learned by this
nonlinear regression model. The great advantage of the Decision Tree is that we can
export a plot of the Decision Tree that shows us exactly how the model has learned
its trends. The code in Code Block 11-26 shows how to generate the tree plot.

from sklearn import tree

build the model
dt_reg_5 = DecisionTreeRegressor(max_depth=3)
dt_reg_5.fit(X2_train, y_train)

plt.figure(figsize=(15,15))

tree.plot_tree(dt_reg_5, feature_names=X2_train.columns)
plt.show()

Code	Block	11-26 Generate the tree plot

The result is shown in Figure 11-17.

Figure	11-17 The tree plot resulting from Code Block 11-26. Image by author

We can clearly see which nodes have learned which trends. We can see that
latitude and longitude are used multiple times by the model, which allows the model
to split out speci�ic areas on the map that are to be prices worse or better.

As this is the �inal model for the current use case, and we know that the R2 score
tells us that the model is a much better estimation than using just an average price,
we can be con�ident that pricing our Airbnb using the decision tree model will result
in a more appropriate price for our apartment.

The goal of the use case has therefore been reached: we have created a
regression model to use both spatial data and apartment data to make the best
possible price estimation for an Airbnb in Amsterdam.

Key	Takeaways
1.

Regression is an area in supervised machine learning that deals with models
that learn how to use independent variables to predict a numeric target variable.

2.

Feature engineering, spatial data, and other data can be used to feed this
regression model.

3.

The R2 score is a metric that can be used for evaluation regression models.
4.

Linear regression is one of the most common regression models, but many
alternative models, including Decision Tree, Random Forest, or Boosting, can be
used to challenge its performances in a model benchmark.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
J. Korstanje, Machine	Learning	on	Geographical	Data	Using	Python
https://doi.org/10.1007/978-1-4842-8287-8_12

12.	Clustering
Joos Korstanje1

VIELS MAISONS, France

In this fourth and last chapter on machine learning, we will cover clustering. To get
this technique in perspective, let’s do a small recap of what we have gone through in
terms of machine learning until now.

The machine learning topics started after the introduction of interpolation. In
interpolation, we tried to estimate a target variable for locations at which the value of
this target variable is unknown. Interpolation uses a mathematical formula to decide
on the best possible theoretical way to interpolate these values.

After interpolation, we covered classi�ication and regression, which are the two
main categories in supervised modeling. In supervised modeling, we build a model
that uses X variables to predict a target (y) variable. The great thing about supervised
models is that we have a large number of performance metrics available that can help
us in tuning and improving the model.

Introduction	to	Unsupervised	Modeling
In this chapter, we will go deeper into unsupervised models. They are the opposite of
supervised models in the sense that there is no notion of target variable in
unsupervised models. There are two main types inside unsupervised models:
1.

Feature reduction
2.

Clustering
In feature reduction, the goal is to take a dataset with a large number of variables

and then rede�ine these variables in a more ef�icient variable de�inition. Especially
when many of the variables are strongly correlated, you can reduce the number of
variables in the dataset in such a way that the new variables are not correlated.

Feature reduction will be a great �irst step for machine learning data
preprocessing and can also be used for data analysis. Examples of methods are PCA,
Factor Analysis, and more. Feature reduction is not much different on geospatial data
than on regular data, which is why we will not dedicate more space for this technique.

https://doi.org/10.1007/978-1-4842-8287-8_12

A second family of models within unsupervised models is clustering. Clustering is
very different from feature reduction, except from the fact that the notion of target
variable is absent in both types of models. Clustering on spatial data is quite different
from clustering on regular data, which is why this chapter will present clustering on
geodata in depth.

Introduction	to	Clustering
In clustering, the goal is to identify clusters, or groups, of observations based on some
measure of similarity or distance. As mentioned before, there is no target variable
here: we simply use all of the available variables about each observation to create
groups of similar observations.

Let’s consider a simple and often used example. In the graph in Figure 12-1, you’ll
see a number of people (each person is an observation) of which we have collected
the spending on two product groups at a supermarket: snacks and fast food is the �irst
category and healthy products is the second.

Figure	12-1 The graph showing the example. Image by author

As this data has only two variables, it is relatively easy to identify three groups of
clients in this database. A subjective proposal for boundaries is presented in the graph
in Figure 12-2.

Figure	12-2 The graph showing a clustering example. Image by author

In this graph, you see that the clients have been divided in three groups:
1.

Unhealthy spenders: A cluster of clients who spend a lot in the category snacks
and fast food, but not much in the category healthy

2.

Healthy spenders: A cluster of clients who spend a lot on healthy products but not
much on snacks and fast food

3.

Small spenders: People who do not spend a lot at all
An example of a way in which a supermarket could use such a clustering is sending

personalized advertisements or discount coupons to those clients of which they know
they’ll be interested.

Different	Clustering	Models
Now, instead of doing this manual split on the graph, we will need a more precise
mathematical machine learning model to de�ine such splits. Luckily, a large number of
such models exist. Examples are
– The k-means algorithm
– Hierarchical clustering
– DBSCAN
– OPTICS
– Gaussian mixture
– And many more. The following source contains a rich amount of information on

different clustering methods: https://scikit-
learn.org/stable/modules/clustering.html.

https://scikit-learn.org/stable/modules/clustering.html

Many of those models, however, are unfortunately not usable for spatial data. The
problem with most models is that they compute Euclidean distances between two
data points or other distance and similarity metrics.

In spatial data, as covered extensively in this book, we work with latitude and
longitude coordinates, and there are speci�ic things to take into account when
computing distances from one coordinate to the other. Although we could use basic
clustering models as a proxy, this would be wrong, and we’d need to hope that the
impact is not too much. It will be better to choose clustering methods that are
speci�ically designed for spatial data and that can take into account correct measures
of distance.

The main thing that you need to consider very strongly in clustering on spatial
data is the distance metric that you are going to use. There is no one-size-�its-all
method here, but we’ll discover such approaches and considerations throughout the
spatial clustering use case that is presented in this chapter.

Spatial	Clustering	Use	Case
In the remainder of this chapter, we will go through a use case for clustering on spatial
data. The use case is the identi�ication on points of interest based solely on GPS tracks
of people.

With those tracking points, we will try to identify some key locations during their
trip, based on the idea that people have spent a little time at that location and
therefore will have multiple points in a cluster of interest. On the other hand, the
points will be more spread out and less clustered when people are on transportation
between points.

We can use clustering for this, since we can expect clustering to �ind the clusters
representing the points of interest. After this, we will use the center points of the
identi�ied clusters as an estimate of the real point of interest.

The steps that we will take from here are
– Importing and inspecting the data
– Building a cluster model for one user
– Tuning the clustering model for this user
– Applying the tuned model to the other users

Let’s start by importing the data in the next section.

Importing	and	Inspecting	the	Data
Let’s get started by importing and inspecting the data. The data is provided as a KML
�ile. You can use the code in Code Block 12-1 to import the data into Python.

import geopandas as gpd
import fiona

gpd.io.file.fiona.drvsupport.supported_drivers['KML'] = 'rw'

geodata = gpd.read_file('chapter_12_data.kml')
geodata.head()

Code	Block	12-1 Importing the data

The geodataframe looks as shown in Figure 12-3.

Figure	12-3 The data. Image by author

The data are stored as one LineString for each person. There are no additional
variables available. Let’s now make a simple plot to have a better idea of the type of
trajectories that we are working with. This can be done using the code in Code Block
12-2.

geodata.plot()

Code	Block	12-2 Plotting the data

The resulting plot is shown in Figure 12-4.

Figure	12-4 The plotted trajectories. Image by author

To add a bit of context to these trajectories, we can add a background map to this
graph using the code in Code Block 12-3.

import contextily as cx
ax = geodata.plot(figsize=(15,15), markersize=64)
cx.add_basemap(ax, crs = geodata.crs)

Code	Block	12-3 Plotting with a background map

The resulting map is shown in Figure 12-5.

Figure	12-5 The map resulting from Code Block 12-3. Image by author using contextily source data and image as
referenced in the image

The three trajectories are based in the city of Brussels. For each of the three
trajectories, you can visually identify a similar pattern: there are clustered parts
where there are multiple points in the same neighborhood, indicating points of
interest. Then there are also some parts where there is a real line-like pattern which
indicates movements from one point of interest to another.

Cluster	Model	for	One	Person
Let’s now move on to the machine learning part. In this section, we start by extracting
only one trajectory, so one person. We will apply a clustering to this trajectory to see if
it can identify clusters in this trajectory.

We start by extracting the data for the �irst person using the code in Code Block
12-4.

#Let's start with finding POI of one person
one_person = geodata[geodata['Name'] =='Person 1']
one_person

Code	Block	12-4 Extract data of Person 1

The data for Person 1 looks as shown in Figure 12-6.

Figure	12-6 The result from Code Block 12-4. Image by author

Let’s plot the trajectory of this person in order to have a more detailed vision of
the behavior of this person. This map can be made using the code in Code Block 12-5.

ax = one_person.plot(figsize=(15,15), markersize=64)
cx.add_basemap(ax, crs = one_person.crs)

Code	Block	12-5 Creating a map of the trajectory of Person 1

The resulting map is shown in Figure 12-7.

Figure	12-7 The map resulting from Code Block 12-5. Image by author using contextily source data and image as
referenced in the image

You can see from this visualization that the person has been at two locations for a
longer period: one location on the top left of the map and a second point of interest on
the bottom right. We want to reach a clustering model that is indeed capable of
capturing these two locations.

To start building a clustering model for Person 1, we need to convert the
LineString into points. After all, we are going to cluster individual points to identify
clusters of points. This is done using the code in Code Block 12-6.

import pandas as pd
one_person_points_df = pd.DataFrame(
 [x.strip('(').strip(')').strip('0').strip(' ').split(' ')
 for x in str(one_person.loc[0, 'geometry'])
[13:].split(',')],
 columns=['long','lat']
)
one_person_points_df = one_person_points_df.astype(float)
one_person_points_df.head()

Code	Block	12-6 Convert the LineString into points

The data format that results from this code is shown in Figure 12-8.

Figure	12-8 The new data format of latitude and longitude as separate columns. Image by author

Now that we have the right data format, it is time to apply a clustering method. As
our data is in latitude and longitude, the distance between two points should be
de�ined using haversine distance. We choose to use the OPTICS clustering method, as
it applies well to spatial data. Its behavior is the following:
– OPTICS decides itself on the number of clusters that it wants to use. This is opposed

to a number of models in which the user has to decide on the number of clusters.
– OPTICS can be tuned to in�luence the number of clusters that the model chooses.

This is important, as the default settings may not result in the exact number of
clusters that we want to obtain.

– OPTICS is able to discard points: when points are far away from all identi�ied
clusters, they can be coded as –1, meaning an outlier data point. This will be

important in the case of spatial clustering, as there will be many data points that
are on a transportation part of the trajectory that will be quite far away from the
cluster centers. This option is not available in all clustering methods, but it is there
in OPTICS and some other methods like DBSCAN.
Let’s start with an OPTICS clustering that uses the default settings. This is done in

the code in Code Block 12-7.

from sklearn.cluster import OPTICS
import numpy as np

clustering = OPTICS(metric='haversine')

one_person_points_df.loc[:,'cluster'] =
clustering.fit_predict(np.radians(one_person_points_df[['lat',
'long']]))

Code	Block	12-7 Apply the OPTICS clustering

The previous code has created a column called cluster in the dataset, which now
contains the cluster that the model has found for each row, each data point. The code
in Code Block 12-8 shows how to have an idea of how the clusters are distributed.

one_person_points_df['cluster'].value_counts()

Code	Block	12-8 Show the value counts

The result is shown in Figure 12-9.

Figure	12-9 The result of the OPTICS clustering. Image by author

Now, as said before, the cluster –1 identi�ied outliers. Let’s delete them from the
data with the code in Code Block 12-9.

remove all the observations with cluster -1 (outliers)
one_person_points_df =
one_person_points_df[one_person_points_df[‘cluster’] != -1]

Code	Block	12-9 Remove the outlier cluster

We can now compute the central points of each cluster by computing the median
point with a groupby operation. This is done in Code Block 12-10.

medians_of_POI = one_person_points_df.groupby(['cluster'])
[['lat', 'long']].median().reset_index(drop=False)
medians_of_POI

Code	Block	12-10 Compute medians of clusters

Figure 12-10 shows the median coordinate for clusters 0, 1, and 2.

Figure	12-10 The resulting clusters. Image by author

Let’s plot those central coordinates on a map using the code in Code Block 12-11.

from shapely.geometry.point import Point
medians_of_POI_gdf = gpd.GeoDataFrame(medians_of_POI,
geometry=[Point(x) for x in zip(
list(medians_of_POI['long']), list(medians_of_POI['lat']))])
medians_of_POI_gdf.plot()

Code	Block	12-11 Plotting the central coordinates of Person 1

The basic plot with the three central points is shown in Figure 12-11.

Figure	12-11 The plot with the three central points of Person 1. Image by author

Let’s use the code in Code Block 12-12 to add more context to this map.

ax = one_person.plot(figsize=(15,15))
medians_of_POI_gdf.plot(ax=ax,markersize=128)
cx.add_basemap(ax, crs = one_person.crs)

Code	Block	12-12 Plot a basemap behind the central points

The result is shown in Figure 12-12.

Figure	12-12 Plotting the central points to a background map. Image by author using contextily source data and
image as references in the image

This map shows that the clustering was not totally successful. The cluster centroid
on the top left did correctly identify a point of interest, and the one bottom right as
well. However, there is one additional centroid in the middle that should not have
been identi�ied as a point of interest. In the next section, we will tune the model to
improve this result.

Tuning	the	Clustering	Model
Tuning models is much more complicated in unsupervised models than in supervised
models. After all, we do not have an annotated dataset: the “real” points of interest are
not known. The best thing is to do some manual checks and keep in mind what your
objective really is. In the current case, we want to �ind centroids, and only centroids of
points of interest.

In the following code, a different setting has been set in the OPTICS model:
– Min_samples is set to 10.

The number of samples in a neighborhood for the point to be considered a core
point.
– Max_eps is set to 2.

This hyperparameter indicates the maximum distance for a point to a cluster
centroid that is allowed to still be considered part of the cluster.
– Min_cluster_size is set to 8.

The minimum number of data points that have to be in a cluster if the cluster is to
be kept.
– Xi is set to 0.05.

Helps in tuning the number of clusters.
These hyperparameter values have been obtained by trying out different settings

and then looking whether the identi�ied centroids coincided with the points of
interest on the map. The code is shown in Code Block 12-13.

try different settings
one_person_points_df = pd.DataFrame(
 [x.strip('(').strip(')').strip('0').strip(' ').split(' ')
 for x in str(one_person.loc[0, 'geometry'])
[13:].split(',')],
 columns=['long','lat']
)
one_person_points_df = one_person_points_df.astype(float)

clustering = OPTICS(
 min_samples = 10,
 max_eps=2.,
 min_cluster_size=8,
 xi = 0.05,
 metric='haversine')

one_person_points_df.loc[:,'cluster'] =
clustering.fit_predict(
 np.radians(one_person_points_df[['lat', 'long']]))
one_person_points_df =
 one_person_points_df[one_person_points_df['cluster'] !=
-1]
medians_of_POI = one_person_points_df.groupby(['cluster'])
[['lat', 'long']].median().reset_index(drop=False)

print(medians_of_POI)

medians_of_POI_gdf = gpd.GeoDataFrame(medians_of_POI,
 geometry=
 [Point(x) for x in

 zip(
 list(medians_of_POI['long']),
 list(medians_of_POI['lat'])
)
])

ax = one_person.plot(figsize=(15,15))
medians_of_POI_gdf.plot(ax=ax,markersize=128)
cx.add_basemap(ax, crs = one_person.crs)

Code	Block	12-13 Applying the OPTICS with different settings

The result of this new clustering is shown in Figure 12-13.

Figure	12-13 The map resulting from Code Block 12-13. Image by author using contextily data and image as
referenced in the map

As you can see, the model has correctly identi�ied the two points (top left and
bottom right) and no other points. The model is therefore successful at least for this
person. In the next section, we will apply this to the other data as well and see whether
the new cluster settings give correct results for them as well.

Applying	the	Model	to	All	Data
Let’s now loop through the three people in the dataset and apply the same clustering
method for each of them. For each person, the cluster centroids will be printed and

plotted on a map against the original trajectory. This will allow us to check whether
the result is correct. The code to do all this is shown in Code Block 12-14.

import matplotlib.pyplot as plt

for i,row in geodata.iterrows():
 print(row)
 one_person_points_df = pd.DataFrame(
 [x.strip('(').strip(')').strip('0').strip(' ').split(' ')
 for x in str(row['geometry'])[13:].split(',')],
 columns=['long','lat']
)
 one_person_points_df = one_person_points_df.astype(float)

 clustering = OPTICS(
 min_samples = 10,
 max_eps=2.,
 min_cluster_size=8,
 xi = 0.05,
 metric='haversine')

 one_person_points_df.loc[:,'cluster'] =
clustering.fit_predict(
 np.radians(one_person_points_df[['lat', 'long']]))

 one_person_points_df =
 one_person_points_df[one_person_points_df['cluster'] !=
-1]

 medians_of_POI =
 one_person_points_df.groupby(['cluster'])[['lat',
'long']].median().reset_index(drop=False)

 print(medians_of_POI)

 medians_of_POI_gdf = gpd.GeoDataFrame(medians_of_POI,
 geometry=
 [Point(x) for x in
 zip(
 list(medians_of_POI['long']),
 list(medians_of_POI['lat'])
)
])

 ax = gpd.GeoDataFrame([row],
 geometry=[row['geometry']]).plot(figsize=(15,15))

 medians_of_POI_gdf.plot(ax=ax,markersize=128)

 plt.show()

Code	Block	12-14 Apply the model to all data

The resulting output and graphs will be shown hereafter in Figures 12-14, 12-15,
and 12-16.

Figure	12-14 Central points on trajectory of Person 1. Image by author

This �irst map shows the result that we have already used before. Indeed, for
Person 1, the OPTICS model has correctly identi�ied the two points of interest. Figure
12-15 shows the results for Person 2.

Figure	12-15 The three central points of Person 2 against their trajectory. Image by author

For Person 2, we can see that there are three points of interest, and the OPTICS
model has correctly identi�ied those three centroids. The model is therefore
considered successful on this person. Let’s now check the output for the third person
in Figure 12-16.

Figure	12-16 The two centroids of Person 3 against their trajectory

This result for Person 3 is also successful. There were two points of interest in the
trajectory of Person 3, and the OPTICS model has correctly identi�ied those two.

Key	Takeaways
1.

Unsupervised machine learning is a counterpart to supervised machine learning.
In supervised machine learning, there is a ground truth with a target variable. In
unsupervised machine learning, there is no target variable.

2.
Feature reduction is a family of methods in unsupervised machine learning, in
which the goal is to rede�ine variables. It is not very different to apply feature
reduction in spatial use cases.

3.
Clustering is a family of methods in unsupervised machine learning that focuses
on �inding groups of observations that are fairly similar. When working with
spatial data, there are some speci�ics to take into account when clustering.

4.
The OPTICS clustering model with haversine distance was used to identify points
of interest in the trajectories of three people in Brussels. Although the default
OPTICS model did not �ind those points of interests correctly, a manual tuning has
resulted in a model that correctly identi�ies the points of interest of each of the
three people observed in the data.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
J. Korstanje, Machine	Learning	on	Geographical	Data	Using	Python
https://doi.org/10.1007/978-1-4842-8287-8_13

13.	Conclusion
Joos Korstanje1

VIELS MAISONS, France

Throughout the 12 chapters of this book, you have been thoroughly
introduced to three main themes. The book started with an
introduction to spatial data in general, spatial data tools, and speci�ic
knowledge needed to work ef�iciently with spatial data.

After that, a number of common tools from Geographic Information
Systems (GIS) and the general domain of spatial analysis were
presented. The �inal chapters of this book were dedicated to machine
learning on spatial data. The focus there was on those decisions and
considerations in machine learning that are different when working on
machine learning with spatial data.

In this chapter, we will do a recap of the main learnings of each of
the chapters. At the end, we will come back to some next steps for
continuing learning in the domain of machine learning, data science,
and spatial data.

What	You	Should	Remember	from	This	Book
In this section, we will quickly go over the main notions that have been
presented throughout the book. As some topics were presented only in
a speci�ic chapter and did not come back multiple times, this will help
you refresh your mind and give you pointers to where you can �ind
some of the key information in case you need to go back.

Recap	of	Chapter	1	–	Introduction	to	Geodata

https://doi.org/10.1007/978-1-4842-8287-8_13

Chapter 1 started with a general introduction to geodata, with a
number of de�initions. Many of those de�initions will be useful in your
daily work with spatial data, including
– Cartesian coordinates
– Polar coordinates and degrees
– Euclidean distance and haversine distance

The chapter then moved on to introduce a number of standard tools
for GIS analysis including ArcGIS, QGIS, and other open source software.
Python was used as a tool in this book, and there are numerous
convincing reasons to use it. If you want to become a GIS analysis
expert, it may be useful to learn other tools as well, but we will come
back to options for future learning paths later in this chapter.

Chapter 1 moved on to introduce multiple data storage types for
spatial data:
– Shape�iles
– KML �iles
– GeoJSON
– Image formats (TIFF/JPEG/PNG)
– Standard formats (CSV/TXT/Excel)

When working with Python, we generally have much more freedom
of data types, as we are able to program any processing operation that
we could need. This is not always the case in click-button
environments. Anyway, it is important to be able to interoperate with
any data storage format that you may encounter.

The chapter concluded by presenting a number of important
Python libraries for working with spatial data in Python, some of which
were used extensively throughout the other chapters of the book.

Recap	of	Chapter	2	–	Coordinate	Systems	and	Projections
In Chapter 2, we went into more detail on coordinate systems and
projections. Spatial references in data are what differentiate spatial
data from nonspatial data. Coordinate systems are one of the things
that make working with spatial data dif�icult. Even if you have a
latitude and longitude column in your dataset, there are many ways to
interpret this, depending on coordinate systems.

When making maps, you are also encountering the theoretical
problem of showing a part of the globe that is essentially a 3D object
onto a 2D image. This is impossible, and we need to choose among
multiple projections that are each wrong in their own way. In general,
maps try to respect one criterion among the correct area, correct
distance, correct shape, and correct direction. We need to �ind one that
best corresponds to our need. The coordinate and projection systems
that were covered are
– WGS 1984 Geographic Coordinate System
– ETRS89 Geographic Coordinate System
– Mollweide equal area projection (a.k.a. Babinet)
– Albers equal area conic projection
– Mercator conformal projection
– Lambert conformal conic projection
– Azimuthal equidistant projection
– Equidistant conic projection
– Lambert equal area azimuthal
– Two-point equidistant projection

There are many coordinate systems out there, and �inding the one
that corresponds best to your need can be a challenge. In case of doubt,
it may be best to stick to the more common projections rather than the
more advanced, as your end users may be surprised if the map doesn’t
correspond to something they are familiar with.

Recap	of	Chapter	3	–	Geodata	Data	Types
In Chapter 3, you have learned about the different data types that
geodata can have. A �irst important distinction is between vector data
and raster data. Raster data is image-like data in which you divide the
surface of your map in pixels and assign a value to each pixel. This is
often used for scienti�ic calculations like hydrology, earth sciences, and
the like. A heat map is a great example of this, as a heat map does not
have a speci�ic shape. Rather, you want to specify heat at each location
of the map.

Vector data works very differently. In vector data, you have objects
that are georeferenced. There are three main vector data types: points,
lines, and polygons.

– Point data has only one coordinate. A point has no size and no shape,
just a location.

– A line is a sequence of points. A line consists of straight lines from
each point to the next, but the overall line can have a shape that
consists of many straight-line parts. The line also has a length, but it
has no surface. The width is zero.

– Polygons are any other form, as they capture a surface in between
maps. The polygon consists of a sequence of points that together
make up the border of the polygon. All area inside this is part of the
polygon. Polygons have a border length and a surface area.
Choosing the data type for your project will really depend on your

use case. Although conversions between data types may sometimes be
not super easy to de�ine, necessary cases for conversion happen, and
you can generally use some of the GIS spatial tools for this.

Recap	of	Chapter	4	–	Creating	Maps
Chapter 4 proposed a deep dive into making maps using Python. As
Python is an open source language, there are many contributors
maintaining libraries for making maps. In the end, you can choose the
library of your choice, but a number of approaches have been covered.

The �irst approach was to use geopandas together with matplotlib.
Geopandas is a great Python package for working with geodata, as it
closely resembles the famous Pandas libraries, which is a data
processing library that is very widely used in data science. Matplotlib is
a plotting library that is also widely used in the data science
community. The combination of those two libraries is therefore greatly
appreciated for those with experience in the data science ecosystem.

Secondly, you have seen how to build maps with the Cartopy library.
Although it may be a bit less intuitive for data scientists, it still
proposes a lot of options that are more anchored in the �ield of GIS and
spatial analysis. This approach may be a great choice for you if you
come from a spatial analysis or cartography background.

Plotly was proposed as a third option for mapping with Python.
Plotly is purely a data visualization library, and it approaches
mapmaking as “just another visualization.” For users that put strong
importance to the visual aspect of their maps, Plotly would be a great
tool to incorporate for making maps.

As a fourth mapping tool, we looked into Folium. Folium is great for
making interactive maps. When you create maps with Folium, you
create a visualization that will almost have a Google Maps–like feeling
to it. Of course, this will not be usable in reports or PowerPoints and
has a speci�ic use case in use cases that are delivered digitally. It is
great for data exploration as well.

Recap	of	Chapter	5	–	Clipping	and	Intersecting
In Chapters 5 to 8, a number of GIS spatial operations were presented.
Chapter 5 started this with the clipping operation and the intersecting
operation.

The clipping operation allows you to take a spatial dataset and cut
out all parts of the data that are outside of boundaries that you specify
to the clip. This even works with features (lines, polygons) that are
partly inside and partly outside of your boundaries, and it will make an
alteration to those shapes.

Intersections are a spatial overlay operation that allow you to take
two input datasets and only keep those features in the �irst dataset that
intersect with features in the second dataset. This operation, just like
many other spatial overlay operations, is derived from set theory.

In the Python examples of this chapter, you have �irst seen how to
apply a clip to a dataset with a number of spatial features. In the
intersecting example, you have seen how to �ind the intersections of a
river with a road in order to �ind out where to �ind bridges. When a
road and a river intersect, we must have a bridge or a tunnel.

Recap	of	Chapter	6	–	Buffers
Chapter 6 proposed the buffering operation. Buffers are areas around
any existing spatial shape (point, line, polygon). Creating buffers are
commonly used in spatial operations as they allow you to create a
shape that contains not just the original feature but also its close
vicinity.

In the Python use case of this chapter, you have used multiple
datasets to de�ine a region in which you want to buy a house based on
distance criteria to parks, metro stations, and more. You have used an
intersection here to �ind a location that respects all of the criteria at the
same time.

Recap	of	Chapter	7	–	Merge	and	Dissolve
Chapter 7 covered the merge operation and the dissolve operation. The
chapter started with the different de�initions of merging. The spatial
join is more than just putting different features in the same dataset, as
it will also combine the �ields (columns) of different datasets together
based on spatial overlap. This is a very useful operation, as we are used
to be able to join tables only when we have a common identi�ier
between the two tables. For spatial data, this is not necessary as we can
use the coordinates to identify whether (parts of) the features are
overlapping.

The dissolve tool is different as it is not meant to do join-like
merges. Rather, it is useful when you want to combine many features
into a smaller number of features, based on one speci�ic value. It is like
a spatial group by operation.

Recap	of	Chapter	8	–	Erase
The fourth and last chapter on spatial operations was Chapter 8,
presenting the erase operation. Although different de�initions of
erasing exist, we covered a spatial erasing operation in which you want
to erase a speci�ic part of a spatially referenced dataset. This is done
not based on a common identi�ier, nor by removing an entire feature
(row) at once, but rather by altering the data to keep those parts of
features that must be erased and keep those parts of a feature that
must be kept.

Recap	of	Chapter	9	–	Interpolation
From Chapter 9, we moved on to more mathematical topics, even
though interpolation is a very common use case in spatial operations
as well. Interpolating is the task of �illing in values in regions where you
have no measurements, even though you have measurements in the
vicinity.

Interpolation is a widely studied topic in mathematics, and one can
make interpolations as dif�icult as one wants. The different methods
for interpolation that were covered are
– Linear interpolation
– Polynomial interpolation

– Piecewise polynomial interpolation, a.k.a. spline interpolation
– Nearest neighbor interpolation
– Linear Ordinary Kriging
– Gaussian Ordinary Kriging
– Exponential Ordinary Kriging

In the Python example of this chapter, we looked at a benchmark
that compares multiple of those methods and see how their results
differ. As we have no ground truth in interpolation, one needs to �ind a
way to determine which method is best to use.

Recap	of	Chapter	10	–	Classi�ication
In Chapters 10 and 11, we covered the two main machine learning
methods of the family of supervised machine learning. Supervised
machine learning is a branch of machine learning in which we aim to
predict a target value by �itting a model on historical data of this target
variable, as well as a number of predictor variables.

In classi�ication, we do so with a target variable that is categorical.
We have covered speci�ic models and metrics for the case of
classi�ication.

The Python example on classi�ication covered a use case in which
we used movements of clients of a mall, and we used this to �it a
predictive model that was meant to predict whether a person would be
interested in a product based on their movement patterns. This
example used spatial operations from earlier chapters to do the data
preprocessing for the model.

Recap	of	Chapter	11	–	Regression
Regression is the supervised machine learning counterpart of
classi�ication. Whereas the target variable is categorical in
classi�ication, it is numeric in regression. You have seen numerous
metrics and machine learning models that can be used for the
regression case.

The Python example of this chapter used spatial and nonspatial
data to predict Airbnb prices of apartments in Amsterdam. You have
seen an example here of how to prepare the spatial and nonspatial data
to end up with a dataset that is suitable for building regression models.

You have also seen how to �it, evaluate, and benchmark multiple
machine learning models for regression.

Recap	of	Chapter	12	–	Clustering
In the last chapter, you have seen a third machine learning method
called clustering. Clustering is quite different from regression and
classi�ication, as there is no target variable in clustering. As the method
is part of the family of unsupervised models, the goal is not to predict
something, but rather to identify groups of similar observations based
on distances and similarities.

Clustering on spatial data comes with some speci�icities, as
computing distances on spatial data (coordinates) needs to be
mathematically correct. As you have seen in the earlier chapters of the
book, distance between two coordinates cannot be correctly computed
using the standard, Euclidean distance.

The Python use case in this chapter presented how to use the
OPTICS clustering model with the haversine distance metric to create a
clustering method that needs to �ind points of interests in movement
patterns of three GPS-tracked people. This chapter has concluded the
part on machine learning on spatial data.

Further	Learning	Path
Of course, this book should have given you a solid introduction into
spatial data with Python and machine learning on spatial data, but
there is always more to learn. This section will give you some ideas for
further learning. Of course, there is never one only way for learning, so
you may consider this as inspiration rather than a presentation of the
one and only way to proceed.

As the book has touched mainly on spatial data and machine
learning, two interesting paths for further learning could be
specializing in GIS generally or going further into machine learning.
Otherwise, things like data storage and data engineering for spatial
data can also be interesting, although a bit further away from the
contents of this book.

Going	into	Specialized	GIS

If you want to go on to become specialized in GIS and spatial analysis in
general, I suggest learning speci�ic tools like ArcGIS and QGIS, or at least
start by checking out those tools and getting around the basics of them.

In this path, it is essential to spend time learning spatial statistical
methods including spatial autocorrelation, spatial heterogeneity,
kriging and other interpolation tools, and more theory to spatial
analysis.

It may also be worth it to spend more time learning about
mapmaking, as the resulting deliverables of this domain will very often
be maps. Mapmaking can be easy, but great maps take time and effort,
as they are ultimately tools for interpretation and communication.
Your time will be well spent mastering this skill.

Specializing	in	Machine	Learning
Although this book has touched multiple machine learning methods
applied to spatial data, the topic of machine learning is a very complex
mathematical domain. If you want to become an expert in machine
learning, there are many things to learn.

This career path is quite popular at the moment, as it allows many
people to work on the forefront of present-day technology, yet it must
be noted that there is a serious learning curve for getting up to speed
with this domain.

Remote	Sensing	and	Image	Treatment
Remote sensing was not covered in this book, but thanks to recent
advances in computer vision, there are a lot of advances in earth
observation and remote sensing as well. As you probably know, a large
number of satellites are continuously orbiting around the earth and
sending photos back. With new technologies from arti�icial
intelligence, these photos can be interpreted by the computer and can
serve a large number of purposes.

Although computer vision may seem like a scary and dif�icult
domain, you can see it as a next step in your learning path after
mastering “regular” machine learning. Of course, the learning curve
may be steep here as well, but the use cases are often very interesting
and state of the art.

Other	Specialties
There are also other �ields of study that are related to the topics that
have been touched on in this book. As an example, we have talked
extensively about different data storage types, but we have not had the
room for talking about things like speci�ic GIS databases and long-term
storage. If you are interested in data engineering, or databases, there is
more to learn on speci�ic data storage for spatial data, together with
everything that goes with it (data architectures, security, accessibility,
etc.).

Many other domains also have GIS-intensive workloads. Consider
the �ields of meteorology, hydrology, and some domains of ecology and
earth sciences in which many professionals are GIS experts just
because of the heavy impact of spatial data in those �ields.

When mastering spatial data operations, you will be surprised of
how many �ields can actually bene�it from spatial operations. Some
domains already know it and are very GIS heavy in their daily work, and
in other domains, everything is yet to be invented.

Key	Takeaways
1.

Throughout this book, you have seen three main topics:
a.

Spatial data, its theoretical speci�icities, and managing spatial
data in Python

b.

GIS spatial operations in Python
c.

Machine learning on spatial data and speci�ic considerations to
adapt regular machine learning to the case of spatial data

2. This chapter has presented a number of ideas for further learning
in the form of potential learning paths:
a.

Specialize in GIS by going into more detail of different GIS tools
and mapmaking.

b. Specialize in machine learning by studying machine learning

theory and practice in more detail

theory and practice in more detail.
c.

Going into advanced earth observation use cases and
combining this with the study of the �ield of computer vision.

d.
Other ideas include data engineering by focusing on long-term
ef�iciently storing geodata or any other �ield that has a heavy
component of spatial data, like meteorology, hydrology, and
much more.

Index
A
Albers equal area conic projection
Azimuthal equidistant projection
Azimuthal/true direction projection

B
Babinet projection
Buffering operations

data type
de�inition
difference creation
GIS spatial operations
intersection operation
line data
point data
polygon
Python

data resulting
house searching criteria
LineString object
point data
polygons
visualization

schematic diagram
set operations
standard operations

C
Cartesian coordinate system
Cartopy
Classi�ication

data modeling
array resulting
dataframe format
error analysis

logistic regression
plot resulting
predictions
resulting comparison
strati�ication

GIS spatial operations
machine learning
model benchmarking
reorganization/standardization
spatial communication

advantage/disadvantage
data resulting
feature engineering
geodataframe
importing data
map resulting
operation
resulting dataframe
source code
truncated version
use case
wide/long data format

Clipping operation
de�inition
differences
GIS spatial operations
line data
Python

dataset
features
plot resulting
seine dataset
source code

schematic drawing
Clustering

background map
central points

chart plotting
de�inition
extract data
GIS spatial operations
graph representation
importing/inspecting data
latitude and longitude
LineString model
map creation
models
OPTICS method
result information
resulting map
source code
spatial data
tuning models

map resulting
OPTICS model
source code

Conformal projections
Conic equidistant projection
Coordinate systems

airplane navigation
Cartesian
geographic systems
GIS spatial operations
local system
maps

dataframe
ESRI:102014
export map
features
Google My Maps
libraries installation
plotting process
polygon-shaped map data

polar system

projected system
time and pose problems
two-dimensional Euclidean space
two-dimensional view
types

D
Data types

GIS spatial operations
lines

airports data
dataframe
de�inition
LineString geometry
mathematical objects
merging data
plot resulting
Python

points
See Point data
polygon information
polygons

de�inition
operations
Python dataset

rasters/grids
de�inition
Python

vector/raster data
Dissolve operation

de�inition
GIS spatial operations
grouped dataset
Python
schematic drawing

Doubly equidistant projection
See Two-point equidistant projection

E
Elliptical projection
Equal area projections
Equidistant projections
Erase operation

clipping
deleting/dropping
GIS spatial operations
line data
overlay
points
polygons
Python

data resulting
data table
de�inition
Iberia
line data
map resulting
plot resulting
point data
Spain data
visualization

schematic drawing
spatial operations
table view

F
Folium map

G
Geodata system

CSV/TXT/Excel
de�inition
distance/direction
GIS
See Geographic Information Systems (GIS)

JSON format
KML �ile
magnetic direction measurements
Python packages
shape�ile
TIFF/JPEG/PNG images

Geographic coordinate systems
ETRS89
latitude/longitude
WGS 84/EPSG:4326

Geographic Information Systems (GIS)
ArcGIS
coordinate systems and projections
database system
intensive workloads
machine learning
open source
Python/R programming
remote sensing/image treatment
specialization

Geopandas/matplotlib map
color-coded column
dataset
documentation
grayscale map
legend
plot method
point dataset
title image

Global Positioning System (GPS)

H
Homolographic projection

I,	J
Interpolation

benchmark
classi�ication/regression

curved line
de�inition
GIS spatial operations
Kriging
See Kriging
linear
list graphical process
nearest neighbor
one-dimensional/spatial interpolation
polynomial functions
Python

dataframe
data points
geodataframe
numerical estimations
plot resulting
2D linear function

straight line
Intersecting operation

buffering operation
conceptual data
differences
geographical datasets
GIS spatial operations
line datasets
polygons
Python

colormap
import data
overlay function
plot resulting

schematic drawing
set operations
standard operations

K
Kriging solutions

exponential setting
fundamental approaches
Gaussian
linear
plot

L
Lambert conformal conic projection
Lambert equal area azimuthal
Linear interpolation
Local Coordinate Systems

M
Mapmaking

Cartopy
color scale picking
folium
geopandas/matplotlib

additional column
color-coded column
documentation
grayscale map
legend
plot method
point dataset
title image

GIS spatial operations
Plotly

Mercator map projection
Merge operation

attribute join
de�inition
GIS spatial operations
Python

attribute join
concatenation
datasets
lookup table

map resulting
row-wise
spatial information
types

schematic drawing
spatial join

Mollweide projection

N
Nearest neighbor interpolation

O
Overlay operation

P,	Q
Plotly map
Point data

de�inition
�ilter morning vs. afternoon
geometry format
operations
Python

content
coordinate system
data information
graph image
plotting information
squirrel data

XML parsing
Polar coordinate system

components
de�inition
formulas
radians vs. degrees
schematic drawing
trigonometric computations

Polynomial interpolation
Potential learning paths

Projected coordinate systems
azimuthal/true direction
conformal projection
equal area
equidistant
features
x and y coordinates

R
Raster vs. vector data
Regression models

data exploration
exploration and model
GIS spatial operations
importing/preparing data
linear
mathematical form
metrics/building models
modeling process

code results
decision tree
DecisionTreeRegressor
geographic data
interpretation
linear model
max_depth
prediction
R2 score evaluation
train and test

numeric target/predictor variable
target variable

S
Spline/piecewise polynomial
Supervised models

T
Two-point equidistant projection

U
Unsupervised models

V,	W,	X,	Y,	Z
Vector vs. raster data
Visualization method

	Front Matter
	Part I. General Introduction
	1. Introduction to Geodata
	2. Coordinate Systems and Projections
	3. Geodata Data Types
	4. Creating Maps

	Part II. GIS Operations
	5. Clipping and Intersecting
	6. Buffers
	7. Merge and Dissolve
	8. Erase

	Part III. Machine Learning and Mathematics
	9. Interpolation
	10. Classification
	11. Regression
	12. Clustering
	13. Conclusion

	Back Matter

