
Clean Android
Architecture
Take a layered approach to writing clean, testable,
and decoupled Android applications

Alexandru Dumbravan

Clean Android
Architecture

Take a layered approach to writing clean, testable,
and decoupled Android applications

Alexandru Dumbravan

BIRMINGHAM�MUMBAI

Clean Android Architecture
Copyright ' 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every e�ort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Rohit Rajkumar
Publishing Product Manager: Nitin Nainani
Senior Editor: Aamir Ahmed
Content Development Editor: Feza Shaikh
Technical Editor: Simran Udasi
Copy Editor: Sa�s Editing
Project Coordinator: Manthan Patel
Proofreader: Sa�s Editing
Indexer: Rekha Nair
Production Designer: Shyam Sundar Korumilli
Marketing Coordinator: Teny �omas

First published: June 2022

Production reference: 1200522

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80323-458-8

www.packt.com

�is book is dedicated to all the developers who went the extra mile to
learn, practice, hack, innovate, and then pass their knowledge on to

others. �is propelled our development world forward and made this book
a possibility. �is book is also dedicated to all the people in my life who
supported me through the times I was staring desperately at a computer

screen �lled with compile errors.

Alexandru Dumbravan

Contributors

About the author
Alexandru Dumbravan has been an Android developer since 2011 and has worked across
a variety of Android applications that have contained features such as messaging, voice
calls, �le management, and �le management. He continues to broaden his development
skills while working in London for a popular �ntech company.

About the reviewers
Revathi Gopalakrishnan is a so�ware professional with 20 years of experience in the
IT industry. She has worked extensively in mobile application development and has led
various enterprise mobile enablement initiatives for large organizations and consumer
applications for customers around the globe. She is also interested in emerging areas,
such as machine learning, IoT, and robotic process automation. She has authored
a book with Packt titled Mobile Machine Learning. Revathi resides in Chennai and enjoys
spending her weekends with her husband and her two lovely daughters.

Jose Miguel is a so�ware engineer who specializes in mobile development, with 5 years
of experience. He has an Android associate developer certi�cation from Google.
He is also involved in the start-up tech community as a mentor in the OpenLab Peru
community, bringing guidance to new Android developers and entrepreneurs who
want to gain certain expertise in the mobile world. He resides in Lima, Peru, and enjoys
watching movies, reading comics, boxing, traveling, and learning about new cultures and
people around the world.

Preface
As an application’s code base increases, it becomes harder for developers to maintain
existing features and introduce new ones. In this clean architecture book, you’ll learn
how to identify when and how this problem emerges and how to structure your code to
overcome it.

�e book starts by explaining clean architecture principles and Android architecture
components and then explores the tools, frameworks, and libraries involved. You’ll learn
how to structure your application in the Data and Domain layers, the technologies that
go in each layer, and the role that each layer plays in keeping your application clean. You’ll
understand how to arrange the code into these two layers and the components involved
in assembling them. Finally, we’ll cover the Presentation layer and the patterns that can be
applied to have a decoupled and testable code base.

By the end of this book, you’ll be able to build an application following clean architecture
principles and have the knowledge you need to maintain and test the application easily.

Who this book is for
�is book is for Android developers who want to learn about managing the complexity of
their applications and is also highly recommended for intermediate or advanced Android
developers looking for a go-to guide for clean architecture and the integration of various
Android technologies. New developers familiar with the fundamentals of Android app
development will �nd this book useful, too.

What this book covers
Chapter 1, Getting Started with Clean Architecture, starts by presenting the evolution of
Android apps with regards to how business logic was structured, and the problems caused
by these approaches. It will then transition to how certain patterns were applied to tackle
these issues, revealing other sets of issues. Finally, the concept of clean architecture will
be introduce, as well as how its principles can be used to solve some of the problems
presented previously.

xii Preface

Chapter 2, Deep Diving into Data Sources, covers what Android tools and frameworks
are available to use with regard to the implementation of the data layer and details
and expands on the ones that will be used later in the book, such as Kotlin �ows and
coroutines, Retro�t, Room, and DataStore.

Chapter 3, Understanding Data Presentation on Android, covers what Android tools and
frameworks are available to use with regard to the implementation of the presentation
layer and will detail and expand on the ones that will be used later in the book, such as
Android ViewModel and Jetpack Compose.

Chapter 4, Managing Dependencies in Android Applications, provides a quick overview
of dependency injection and how it works. It brie�y explores some of the dependency
injection tools available for Android development, ending with the Hilt dependency
injection framework, about which it goes into a more detailed explanation because it will
be used in many of the exercises in the book.

Chapter 5, Building the Domain of an Android Application, describes how to build
a domain layer and what components are part of this layer. You will learn about entities
and use cases or interactors and what roles they play when it comes to designing the
architecture of your application.

Chapter 6, Assembling a Repository, covers the Data layer and the responsibilities this layer
has when it comes to managing an application’s data, and how it can use the Repository
pattern to achieve this.

Chapter 7, Building Data Sources, continues the exploration into the Data layer and some
examples of data sources that can be de�ned in Android. You will learn about using
remote data sources to load data from various servers as well as local data sources such as
Room and DataStore.

Chapter 8, Implementing an MVVM Architecture, presents the MVVM architecture pattern
and how it can be used in an application’s presentation layer. You will learn how to use the
Android ViewModel and LiveData to build an app with MVVM and integrate use cases
into the ViewModel.

Chapter 9, Implementing an MVI Architecture, presents the MVI architecture pattern and
how it can be used in an application’s presentation layer. You will learn how to use Kotlin
�ows and Android ViewModel to implement the MVI pattern.

Chapter 10, Putting It All Together, covers the bene�ts of clean architecture by analyzing an
example of an application that implements the concepts and then adding instrumentation
tests with Espresso and Jetpack Compose. �e introduction of UI tests serves as a good
example of how we can inject and change certain behaviors in the application for testing
purposes without needing to modify the application’s code.

xiv Preface

Conventions used
�ere are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
�lenames, �le extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Inside the resources folder, create a subfolder called mockito-
extensions. Inside this folder, create a �le named org.mockito.plugins.
MockMaker, and inside this �le, add the text mock-maker-inline."

A block of code is set as follows:

data class User(
 val id: String,
 val firstName: String,
 val lastName: String,
 val email: String
) {

 fun getFullName() = "$firstName $lastName"
}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

…
@Composable
fun Screen(viewModel: MainViewModel = viewModel(factory =
MainViewModelFactory())) {
 viewModel.uiStateLiveData.observeAsState().value?.let {
 UserList(uiState = it)
 }
}
…

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "Create
a new project in Android Studio using an Empty Compose Activity."

Tips or Important Notes
Appear like this.

Preface xv

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of your
message.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if you
would report this to us. Please visit www.packtpub.com/support/errata and �ll in
the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share Your Thoughts
Once you’ve read Clean Android Architecture, we’d love to hear your thoughts! Please click
here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re
delivering excellent quality content.

Part 1 – Introduction

In this part, you will become familiar with the notion of clean architecture and the
principles it provides. �is part also explores the tools, frameworks, and libraries used
later in the book.�

�is part includes the following chapters:

�	 Chapter 1, Getting Started with Clean Architecture

�	 Chapter 2, Deep Diving into Data Sources

�	 Chapter 3, Understanding Data Presentation on Android

�	 Chapter 4, Managing Dependencies in Android Applications�

1
Getting Started with

Clean Architecture
In this chapter, we’ll take you back and show you how a feature would have been
implemented in the past while analyzing the potential issues and problems with that
approach. �en, we’ll look at some key design principles for so�ware development and
apply those principles to our legacy examples. A�er that, we’ll cover the evolution of the
Android platform and the various libraries and frameworks that have emerged. We’ll also
see how they can be integrated while adhering to various so�ware design principles.

A�er that, we’ll introduce clean architecture so that we know what our system needs to be
improved and what questions we must ask, as developers, so that we can create a robust,
scalable, maintainable, and testable application.

In this chapter, we’re going to cover the following main topics:

�	 �e architecture of a legacy app

�	 So�ware design principles

�	 Exploring the evolution of Android

�	 Enter clean architecture

By the end of this chapter, you will know about the evolution of Android development, its
architecture, and its design concepts, as well as the concept of clean architecture and how
it can be used to build �exible, maintainable, and testable applications.

�e architecture of a legacy app 5

Before we start analyzing an older application, we must distinguish the architecture
and design of an application. To borrow from the construction industry, we can de�ne
architecture as a plan for the structure of a building; a design would be a plan to create
each part of the building. Translating this into the world of so�ware engineering, we can
say that the architecture of an application or a system would be de�ning a plan that would
incorporate the business and technical requirements, while so�ware design deals with
integrating all the components, modules, and frameworks into this plan. In an ideal world,
you would want to recognize the architecture of an application in the same way you would
recognize the architecture of your house.

Now, let’s look at the four main components of an Android application:

�	 Activities: �ese represent the entry points for interacting with the user.

�	 Services: �ese represent the entry points for having an app run in the background
for all kinds of reasons, such as large downloads or audio playback.

�	 Broadcast Receivers: �ese allow the system to interact with an application for
a variety of reasons.

�	 Content Providers: �ese represent a way for an application to manage
application data.

Using and relying on these components created a challenge for developers because an
app’s architecture became dependent on the Android framework, mainly when it came to
implementing unit tests. To understand why this is a problem, let’s look at an example of
what some older application code would look like. Let’s suppose you have been asked to
fetch some data from a backend service. �e data would be served in the form of JSON
through an HTTP connection.

It wasn’t uncommon to see a class such as BaseRequest.java, which would execute
the request and depend on abstraction in the form of JsonMapper.java, to convert the
data from a String into a Plain Old Java Object (POJO). �e following code represents
an example of how fetching the data might be implemented:

public class BaseRequest<O> {

 private final JsonMapper<O> mapper;

 protected BaseRequest(JsonMapper<O> mapper) {
 this.mapper = mapper;
 }

6 Getting Started with Clean Architecture

 public O execute() {
 try {
 URL url = new URL("schema://host.com/path");
 HttpURLConnection urlConnection =
 (HttpURLConnection) url.openConnection();
 int code = urlConnection.getResponseCode();
 StringBuilder sb = new StringBuilder();
 BufferedReader rd = new BufferedReader(new
 InputStreamReader(urlConnection.
 getInputStream()));
 String line;
 while ((line = rd.readLine()) != null) {
 sb.append(line);
 }
 return mapper.convert(new JSONObject
 (sb.toString()));
 } catch (Exception e) {
 …
 } finally {
 if (urlConnection != null) {
 urlConnection.disconnect();
 }
 }
 return null;
 }
}

In the execute method, we would use HttpURLConnection to connect to the
backend service and retrieve the data. �en, we would read it into a String, which
would then be converted into a JSONObject and then passed to JsonMapper to be
converted into a POJO.

�e JsonMapper.java interface would look something like this:

interface JsonMapper<T> {
 T convert(JSONObject jsonObject) throws JSONException;
}

�e architecture of a legacy app 7

�is interface represents the abstraction of converting a JSONObject into any POJO.

�e use of generics allows us to apply this logic to any POJO. In our case, the POJO should
look something like ConcreteData.java:

public class ConcreteData {

 private final String field1;
 private final String field2;

 public ConcreteData(String field1, String field2) {
 this.field1 = field1;
 this.field2 = field2;
 }
 public String getField1() {
 return field1;
 }
 public String getField2() {
 return field2;
 }
}

�e ConcreteData class will be responsible for holding the data we will receive from
the backend service. In this case, we just have two String instance variables.

Now, we need to create a concrete JsonMapper.java that will be responsible for
converting a JSONObject into ConcreteData:

public class ConcreteMapper implements JsonMapper<ConcreteData>
{

 @Override
 public ConcreteData convert(JSONObject jsonObject) {
 return new ConcreteData(jsonObject.optString
 ("field1"), jsonObject.optString("field2"));
 }
}

8 Getting Started with Clean Architecture

�e convert method creates a new ConcreteData object, extracts the data from the
JSONObject object, and populates the field1 and field2 values.

Next, we must create a ConcreteRequest.java that will extend BaseRequest and
use ConcreteMapper:

public class ConcreteRequest extends BaseRequest<ConcreteData>
{

 public ConcreteRequest() {
 super(new ConcreteMapper());
 }
}

�is class will inherit the execute method from BaseRequest and supply a new
ConcreteMapper object so that we can convert the backend data into ConcreteData.

Finally, we can use this in our Activity to execute the request and update our user
interface (UI) with the result. Here, we have a limitation: we cannot execute long-running
operations on the main (UI) thread and we cannot update our views from any other
thread except the UI thread. �is means that we would need something to help with this.
Luckily, Android provides the AsyncTask class, which o�ers a set of methods for doing
work on a separate thread and then processing the results on the main thread. However,
we risk creating a context leak (if, for any reason, the Activity object is destroyed,
then the garbage collector will not be able to collect the Activity object while
AsyncTask is running since Activity has a dependency on AsyncTask) by using
an inner AsyncTask class. To circumvent this, the recommended approach is to create
a WeakReference for our Activity. �is way, if the Activity object is destroyed
either by the user or the system, its reference can be collected by the garbage collector.

Now, let’s look at the code for our MainActivity:

public class MainActivity extends Activity {

 private TextView textView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 this.textView = findViewById(R.id.text_view);

�e architecture of a legacy app 9

 new LoadConcreteDataTask(this).execute();
 }

 private void update(ConcreteData concreteData) {
 textView.setText(concreteData.getField1());
 }
}

�is class is responsible for loading the UI and starting LoadConcreteDataTask. �e
update method will then be called by LoadConcreteDataTask to show the data in
the user interface.

LoadConcreteDataTask must be an inner class of MainActivity:

public class MainActivity extends Activity {
 …

 private static class LoadConcreteDataTask extends
 AsyncTask<Void, Void, ConcreteData> {
 private final WeakReference<MainActivity>
 mainActivityWeakReference;
 private LoadConcreteDataTask(MainActivity
 mainActivity) {
 this.mainActivityWeakReference = new
 WeakReference<>(mainActivity);
 }

 @Override
 protected ConcreteData doInBackground(Void...
 voids) {
 return new ConcreteRequest().execute();
 }

 @Override
 protected void onPostExecute(ConcreteData
 concreteData) {
 super.onPostExecute(concreteData);
 MainActivity mainActivity =

10 Getting Started with Clean Architecture

 mainActivityWeakReference.get();
 if (mainActivity != null) {
 mainActivity.update(concreteData);
 }
 }
 }
}

In LoadConcreteDataTask, we take advantage of the doInBackground method,
which is executed on a separate thread to load our data and then update our UI in the
onPostExecute method. We also hold a WeakReference to MainActivity so that
it can be safely garbage collected when destroyed. �is also means that we will need to
check if the reference still exists before updating the user interface.

�e class diagram for the preceding code looks as follows:

Figure 1.1 � A class diagram for an older Android app

Here, we can see how the dependencies move from MainActivity toward the
ConcreteRequest class, with one exception between MainActivity and
LoadConcreteDataTask, where both classes depend on each other. �is is a problem
because the classes are then coupled together and making a change to one implies making
a change to the other. Later in this chapter, we will look at some principles that can help us
avoid such dependencies.

�e architecture of a legacy app 11

Now that we have an idea of what a legacy application looks like, let’s see what issues we
may encounter if we follow this path.

Legacy analysis
In this section, we will analyze some of the problems that legacy applications have.

Let’s ask ourselves the following questions:

1.	 What can we unit test?
2.	 What happens if, instead of showing the value of field1 from ConcreteData,

we need to show field1+field2?
3.	 What happens when the requirements for this particular screen change and data

needs to be retrieved from another endpoint on top of this one?
4.	 What happens if we need to introduce caching or SQLite persistence?
5.	 What happens if another activity needs this particular use case?

Let’s answer these questions:

�	 Answer 1: �e answers to all of these questions will come with headaches. �e
�rst question is a mix of technical limitations and doubtful design techniques. �e
technical limitation comes from the fact that the code will execute on the device
or an emulator, but we want our unit tests to be executed on our development
machines. �is is the reason we have the split between the androidTest and
test directories. �eoretically, we can write our unit tests so that they can run on
the emulator, but that takes more time and instability. We can now execute these
types of tests in the cloud using technologies such as Firebase Test Lab, but that
would inevitably cost us money and it’s in our interest to avoid taking in such costs.
Realistically, we are le� with one option and that is to test as much as possible using
local unit tests instead of instrumented ones. To solve this, we will need to separate
the Android components we use from the Java components.

�	 Answer 2: �e second question produces a similar problem. �e easiest choice here
would be to put that concatenation into MainActivity or add a method into the
ConcreteData class that will return the concatenated result. But either of these
will come with downsides. If we move the concatenation into MainActivity, we
will put logic that can be unit tested into a class that is very hard and shouldn’t be
unit tested. If we create a method to concatenate in ConcreteData, we risk giving
responsibility to this class that it shouldn’t have since it’s related more to the UI than
the actual representation of the JSON itself. What if, in the future, the networking
aspect is developed by another team? You would need to rely on that particular
team to create this update.

12 Getting Started with Clean Architecture

�	 Answer 3: �e answer to the third question looks straightforward as well. We
must create new concrete implementations for the new data to be added and the
associated request. �en, we will either create a separate class that will extend
AsyncTask or execute both requests in the same LoadConcreteData class and
then update the UI. If we create a separate AsyncTask, then we will need to make
the activity responsible for managing the results and balance the two AsyncTasks,
which again creates a problem concerning testing. If we execute the requests in the
same AsyncTask, then the responsibility of AsyncTask increases, which we may
want to avoid.

�	 Answer 4: �e fourth question presents us with a new challenge. Let’s say we add a
new database class that contains all the methods to perform create, read, update,
and delete (CRUD) operations. Which one of our classes would have a dependency
on this class? �e choices here would be between the two request classes and
LoadConcreteDataTask. Here, we run into the same issues that we did in the
previous questions. If we used the request classes, we would end up being more
responsible for dealing with HTTP connections than handling calls to the database.
If we use LoadConcreteDataTask, we make the answer to the ��h question
even harder.

�	 Answer 5: Based on the previous answers, we notice that a lot of work may end
up being moved to the LoadConcreteDataTask class. Now, let’s imagine
that another activity with a completely di�erent UI and a di�erent interpretation
of that data will rely on the same use case. One solution is to duplicate
LoadConcreteDataTask into the new activity. �is is not a great idea because a
change in the requirements will make the developers change all the tasks. A better
approach would be to create a new abstraction that will remove the dependency
between LoadConcreteDataTask and Activity. �is would allow us to reuse
the same class for both activities. Let’s say that the activities would need di�erent
types of data for each interpretation. Here, we could follow the JsonMapper
example and create an interface that would convert ConcreteData into a generic
type, provide two implementations for each activity, and create the necessary POJOs
to convert into.

Another question that can be asked here is, "What amount of work would be necessary
to export the business logic into another project?" �is is an important question because
it highlights how we should structure our code so that it can be reused by others without
making it a pain for them to integrate. If we were to answer this, we must �rst ask,
"Where’s the business logic?" �e answer would probably be LoadConcreteDataTask.
Can we export that and publish it somewhere where other developers can get it?

So�ware design principles 13

�e answer is no, because of its dependency on MainActivity. �is question highlights
an important aspect of de�ning an architecture, namely drawing the boundaries around
your components. A component can be de�ned as the smallest piece of deliverable code.
In our case, it would be the equivalent of a module. Now, let’s say we were in a place
where we could ship out our LoadConcreteDataTask. A follow-up question would
be, "Would the data be hosted on the same service?" followed by, "Is it in the same JSON
format?" Here, we would need to draw a boundary between LoadConcreteDataTask
and BaseRequest and remove such dependencies on how the data is retrieved.

�e reason these questions were raised and answered is that all those scenarios have
happened in the past and they will all likely happen in the life cycle of an application. We,
as developers, tend to answer those questions in our code di�erently based either on time
constraints, the rigor imposed on the team we work in, our ambition to deliver something
fast by constantly challenging ourselves, and our experience or the team’s experience. �e
fact that we had the option to make a less desirable solution or to be stuck in a situation
where we had to pick between the frying pan or the �re represents a problem. Sometimes,
it is good to take a step back from our daily routine, ask ourselves some of these questions,
do mind experiments to see how our code may end up in those scenarios, and assess what
would happen if that would happen now or 1 or 2 years from now.

A common scenario a lot of Android developers found themselves in was having a lack of
businesses investing in testing because it would take too much time and there was a need
to go to market. In many of these cases, the apps became harder to maintain over time,
so more developers needed to be hired to keep the same productivity as a team compared
to when they had fewer developers. When code is written with the notion that it needs
to be unit tested, then the way we write that code becomes more rigorous and more
maintainable. We start keeping track of how we create instances and separate the things
we can test from the things we can’t, we apply creational design patterns, and we also
shorten the sizes of the methods in our classes, among other things.

We now have an idea of how applications used to be written in the past and the problems
that were caused by the approaches that were taken, such as issues with the testability
and maintainability of an application due to dependencies on the Android framework.
Next, we will look at some design principles that will prove useful in how we write an
application.

Software design principles
In this section, we will analyze a set of design principles that are adopted by developers
worldwide to improve their systems and can also be applied to Android development. We
will mainly focus on the principles de�ned by Robert C Martin (also known as Uncle Bob)
for classes and components because they are well suited to Android development.

14 Getting Started with Clean Architecture

Based on the examples in the previous section, we understand that our code bases
should be maintainable, understandable, and �exible. �ere is a set of so�ware design
principles that we can turn to for help when we develop classes or components. �ink of
a component as the minimum amount of code that can be released as part of a system.
In Android, you can view them as individual modules. �ey don’t necessarily need to be
modules, but they can be organized as if they are.

SOLID principles
�ese are some of the most known design principles. �e name is an acronym for a set of
design principles that were collected by Robert C Martin. �ese principles are as follows:

�	 Single responsibility principle

�	 Open-closed principle

�	 Liskov substitution principle

�	 Interface segregation principle

�	 Dependency inversion principle

Let’s look at these principles in detail:

�	 Single Responsibility Principle: �is states that a class should have one
responsibility or one reason to change. Looking at our example, let’s suppose
someone makes a change to the BaseRequest class to change how the HTTP
request is executed. Let’s assume that we now have two di�erent AsyncTasks
that will load the data. Both of these will be impacted by the change in the
BaseRequest class. A solution would be to delegate the execution of the request
to di�erent classes for each particular use case. �is would also allow developers to
work on di�erent features related to backend communication without changing the
same source �le.

�	 Open-Closed Principle: �is states that a class should be open for extension and
closed for modi�cation. �inking back to our example, this principle would answer
the question, "What would happen if an activity requires this particular use case?"
�e abstractions we discussed in how to answer that question would serve as a good
example of implementing this principle.

So�ware design principles 15

�	 Liskov Substitution Principle: �is states that a parent class should be replaced
by a child class without changing the behavior of the system. An example of this
principle is if you have a class called Bird and a sub-class called Duck. If you are
using references of Bird in your code and substitute those usages with Duck,
then your code should remain unchanged. A famous example of a violation of
this principle is having a Rectangle class with two members named width and
height and a sub-class named Square. In reality, a square is a rectangle, but our
modeling of a square wouldn’t be a rectangle because the rules in Square would
mean that the width and height will always have to be the same. If you were to swap
these two dependencies, then your code would break.

�	 Interface Segregation Principle: �is states that we should avoid using large
interfaces and instead break them up into smaller interfaces. �e idea here is that
code shouldn’t depend on methods it doesn’t use. An example of this is de�ning
interfaces whose methods don’t need to be implemented. A good example
of this is the approach that’s taken in Android user interfaces by separating
OnClickListener, OnLongClickListener, and OnTouchListener.

�	 Dependency Inversion Principle: �is states that we should depend on
abstractions rather than concretions. �e idea here is to depend as much as possible
on abstract classes and interfaces. �is can be very di�cult to achieve considering
that we rely on concretions a lot of the time. Here, we should identify parts of the
code that are constantly developed and subject to change and introduce layers of
abstractions between our code and these classes. A good way to protect against
this is through dependency injection frameworks such as Dagger and Hilt, which
generate factories to create volatile components.

SOLID principles are used across the object-oriented programming (OOP) �eld to
create applications that are �exible and able to incorporate new features and requirements.
�e principles that follow represent an expansion of SOLID.

Component cohesion principles
We can de�ne cohesion by how well the classes in a component belong together or what
classes belong in a certain component. In the past, components were assembled based on
the context without any particular guiding principle. �is would cause issues such as a
change in the dependencies of a component triggering a change in the dependants of this
component, without this having any relevance to the dependants.

16 Getting Started with Clean Architecture

�e three principles are as follows:

�	 Reuse/Release Equivalence Principle (REP): �is states that we group classes
in a component that can be released together. In Android development, this
would translate to making sure that every module you create should be able to be
published and used by other developers.

�	 Common Closure Principle (CCP): �is states that components should have
one reason to change. �is principle is an application of the single responsibility
principle for components.

�	 Common Reuse Principle (CRP): �is states that a component should only have
classes that should be used together. �is represents the interface segregation
principle for your component. In Android, this would mean that you should make
sure that the users of your Android modules depend on all your classes in the
module, not just some.

When these principles are incorporated, they end up con�icting with each other. REP
and CCP tend to make components bigger, while CRP tends to make them smaller. �e
idea is to always match the current requirements of the application and �nd the middle
ground between these principles. A�er that, you should constantly monitor how new
requirements would a�ect this middle ground.

Now that we’ve seen how SOLID can be applied to building a particular component
through the component cohesion principles, let’s learn how to manage a set of
components.

Component coupling principles
�ese principles deal with how to manage the relationships between our components in
an Android application. In Android, this would be represented by how to manage the
Gradle dependencies between di�erent modules. �e principles are as follows:

�	 Acyclic Dependencies Principle: �is states that we should avoid cyclic
dependencies between components. Applying this to Android would mean
that the dependencies that our modules have most not be cyclical (for example,
module A depends on module B, which depends on module A). Fortunately,
this rule is currently enforced by the build system, which doesn’t allow cyclical
dependencies. A solution to this would be to create a new module in which we
apply the dependency inversion principle and make one of the modules depend on
the abstraction and create the implementation in the second module. If this is not
possible, we can create a new module that can depend on both existing modules. An
example of this can be seen in the following diagram:

So�ware design principles 17

Figure 1.2 � Cyclic module dependency

�	 Stable Dependencies Principle: �is states that less stable modules should depend
on more stable modules. A component’s stability is de�ned as the ratio between
outgoing dependencies (dependency on other components) and the total number of
dependencies. �e closer the number is to 0, the more stable a component becomes.
�is means that stable components should avoid having changes made because
this will cause potential issues for the components that depend on the stable ones.
One solution to avoid the dependencies between stable components and volatile
components would be using abstract components. �ese are components that will
contain nothing but abstractions.

�	 Stable Abstractions Principle: �is states that components that are likely to change
should be more concrete and that stable components should be more abstract. �is
principle represents an application of the open-closed principle. We would want
our high-level architecture decisions to be �exible enough to be changed without
having to modify existing source code. We can achieve this using abstract classes.
�e abstractness of a component is de�ned as the ratio between the number of
abstract classes and interfaces inside a component and the total number of classes
in the component. �e closer to 1 the value gets, the more abstract the component
becomes. A component with 0 stability and 0 abstractness represents a zone of pain
because it is very hard to change. A component with 1 stability and 1 abstractness
is called a zone of uselessness because we have an independent component with no
implementations. �e aim is to get as many components as possible in either the 0
stability and 1 abstractness or 1 stability and 0 abstractness range.

18 Getting Started with Clean Architecture

With that, we have looked at some of the key design principles that should help us tackle
problems that we face while developing an application. �e SOLID principles show us
how we should structure our code into classes, while the component cohesion principles
and component coupling principles show us how we should structure our classes into
separate modules, as well as how we should establish the relationships between those
modules. In the next section, we will see how these principles lead to the evolution of the
Android platform and what an application may look like now.

Exploring the evolution of Android
In this section, we will look at key releases and changes that have been made to the
Android framework and supporting libraries that have shaped the development of
applications and how applications have evolved because of these changes.

We started by looking at an example of what the code in an older Android application
looked like before looking at the design principles we should incorporate into our work.
Now, let’s see how the Android framework evolved and how some of our questions
from the beginning have been answered. We will analyze some of the newer libraries,
frameworks, and technologies that we can incorporate into an Android application.

Fragments
�e introduction of fragments was meant to solve important issues developers were facing
� that is, the activity code would become too big and hard to manage. �ey were released
on Android Honeycomb, which was an Android release that only targeted tablets. �e
introduction of fragments was also meant to solve the issue of having di�erent displays
for activities in landscape versus activities in portrait. Fragments are meant to control
portions of an activity’s user interface.

Another improvement fragments brought was the ability to change and replace fragments
at runtime. �ere was even a separate back stack for Fragments that the activity would
be responsible for. �is comes at a couple of costs: the life cycle of the fragment was
even more complex than the life cycle of the activity, where you would have fragments
that had their views destroyed but the fragments themselves weren’t. Another cost was
the communication between two fragments. If you needed to update the user interface
being handled by Fragment1 because of a change in Fragment2, you would need to
communicate through the activity. �is meant that every time a Fragment needed to be
reused by a di�erent activity, then the activity would be forced to adapt to this:

Exploring the evolution of Android 19

Figure 1.3 � Activity and fragment life cycle

In the preceding �gure, we can see the di�erence between the lifecycle of activities and
the lifecycle of fragments. We can observe how fragments have their own internal lifecycle
for managing the views that they display between the onCreateView method and
onDestroyView methods. �is is o�en the reason why in many applications, you will
see these methods used to load data and on the opposite site unsubscribing from any
operations that might trigger a change in the user interface.

20 Getting Started with Clean Architecture

The Gradle build system
Initially, Android development used the Eclipse IDE and Ant as its build system. �is
came with certain limitations for applications. �ings such as �avors were not available at
the time. �e release of Android Studio, along with the Gradle build system, provided new
opportunities and features. �is allows us to write extra scripts and easily integrate plugins
and tools, such as performance monitoring of an application, Google Play services,
Firebase Crashlytics, and more. �is is o�en done through ".gradle" �les. �ese �les
are written in a language called Groovy. Another improvement that was added was the
usage of the ".gradle.kts" extensions, where we can provide the same con�gurations
using the Kotlin language. �e following code shows what the build.gradle �le for
a module looks like:

plugins {
 id 'com.android.application'
}
android {
 compileSdk 31
 defaultConfig {
 minSdk 21
 targetSdk 31
 versionCode 1
 versionName "1.0"
 }
 buildTypes {
 release {
 }
 }
 compileOptions {
 }
}
dependencies {
 implementation ""
}

Exploring the evolution of Android 21

In the plugins section, we can de�ne external plugins that will provide certain methods
and scripts that our project can use. Examples include annotation processing plugins, the
Parcelize plugin, and Room plugins. In this case, the com.android.application
plugin o�ers us the android con�guration, which we can then use to specify the
app version, what Android versions we want the app to be accessible from, various
compilation options, and con�gurations for how the app should be built for the end user.
In the dependencies section, we specify which external libraries we want to add to the
project.

Networking
Quite a few popular networking libraries have emerged, mainly in the open sourcing
community. A large proportion of the applications in Google Play rely on HTTP
communication and a large proportion of them use JSON data. With the addition of
networking libraries, JSON serialization/deserialization to POJOs also became adopted.
What this means for developers is that the communication with the backend is simpli�ed
� we no longer need to concern ourselves with how the actual communication is done;
we only point to where we want the data from and provide the models that are required
for this communication. �e libraries will take care of the rest. Some of the most popular
libraries include Volley and Retro�t. In terms of object serialization, we have libraries such
as Moshi and GSON.

Humble objects
Because activities and fragments are di�cult to unit test, the code inside them needed
to be split into testable sections and untestable sections. Because of this necessity, two
patterns emerged: Model View Presenter (MVP) and Model View ViewModel (MVVM).
Sometimes, these patterns are referred to as architecture patterns. �is shouldn’t be
confused with the entire architecture of the app. �e idea is to turn activities and
fragments into humble objects with no logic, keep the references to the user interface
objects, and shi� the logic into the presenter and ViewModel, which we can write unit
tests for. We will focus more on the particularities of each in Chapter 8, Implementing an
MVVM Architecture.

22 Getting Started with Clean Architecture

Functional paradigms
Just like objected-oriented languages have adopted paradigms from functional
programming, so has the Android development world in the form of RxJava. Functional
programming works on the premise that programs are built from composing functions
rather than imperative statements such as the ones in Java. RxJava is a library that allows
developers to implement event-driven applications. It o�ers observables (for emitting
data) and subscribers (for subscribing to that data). What made this library appealing to
developers was how it deals with threading. Let’s assume you wanted an operation to be
executed on a separate thread, and then you wanted to transform your data � all you need
to do here is invoke the data you want, apply mapping functions, and then subscribe to
get the �nal result. �e added bene�t is that you can chain di�erent operations, have them
processed, and get the result with all of the operations. All of this removes the need for
creating and managing di�erent AsyncTasks or threads.

Kotlin adoption
RxJava introduced some aspects of functional programming. Its adoption and transition
into Kotlin programming has added others. One of the most important is the concept of
mutability. In Java, all variables are mutable unless they’re declared otherwise through
the final keyword. In Kotlin, all the variables must have their mutability declared.
Why is this important? Because of multi-threading. If you had an application where
multiple threads were executed at the same time and they all interacted with the same
object, you would end up in a situation where you would either modify the same value
at the same time or create deadlocks in which a thread would wait for another thread to
release a resource, but the second thread would need access to a resource that the �rst
thread is currently holding. �is introduction helps developers aim for a greater degree of
immutability, which would increase thread safety because immutable variables are thread-
safe. Lambdas represent another great feature of Kotlin that allows boilerplate code to
be reduced when you’re dealing with callbacks. Other bene�ts of the adoption of Kotlin
include that you can remove boilerplate code by introducing data classes, which represent
POJOs, and introducing sealed classes, which allow developers to de�ne enum-like
structures that can carry data.

Exploring the evolution of Android 23

Dependency injection
Dependency injection represents the decoupling of object invocation and object creation.
Why is this important? Mainly because of testing. It’s easier to write unit tests for classes
that have their dependencies injected rather than adding extra responsibilities, such as
creating new instances for all of the dependencies in that class. Another bene�t is in
situations where we depend on abstractions. If we have a dependency on an abstraction,
we can easily switch between di�erent implementations, depending on di�erent
circumstances. Several libraries have emerged to tackle this issue: Dagger, Koin, and Hilt.
Dagger is more of a general library that is not only Android applicable, but also applicable
for other Java-based platforms. It aims to manage our dependencies using components
and modules. Components are responsible for how the dependencies are managed,
while modules are responsible for providing the appropriate dependencies. It relies on
annotation processors, which generate the necessary code that will be responsible for
managing our dependencies. Koin is what’s referred to as a service locator library. It keeps
a collection of all the dependencies and when a particular dependency is required, it will
look it up and provide it. Koin is an Android-speci�c library, and it provides support
for injecting speci�c Android dependencies. Hilt is the newest of these libraries and it is
built on top of Dagger. It removes the boilerplate code that was required for Dagger and
provides support for Android dependencies as well.

Android architecture components
�is is represented by a set of libraries that help developers make their apps scalable,
testable, and maintainable. �ese libraries a�ect components that deal with activity and
fragment life cycles, persisting data, background work, and UIs. Here, we have seen the
introduction of concepts such as life cycle owners (such as activities and fragments),
the Android ViewModel, and LiveData. �ese are meant to solve problems developers
had with managing the state of a life cycle owner when it’s destroyed and recreated by
the system. It puts the logic that, in the past, was handled by the life cycle owners and
delegated to the Android ViewModel. �e combination of the Android ViewModel and
LiveData has helped developers implement the MVVM pattern, which is also life cycle
aware. �is means that developers no longer have to concern themselves with stopping a
background task when the life cycle owner is destroyed.

Exploring the evolution of Android 25

Jetpack Compose
�is allows developers to build UIs directly in Kotlin without the use of XML �les through
composable functions. �is removes the amount of code that needs to be written for
building your UI. Compatibility with the other Android architecture component libraries
is provided, allowing for easier integration into your application. �e following is an
example of what Compose looks like:

class MainActivity : ComponentActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 ExampleTheme {
 Surface {
 ExampleScreen()
 }
 }
 }
 }
}

@Composable
fun ExampleScreen() {
 Column(modifier = Modifier.padding(16.dp)) {
 TextField(
 value = "",
 onValueChange = {
 // Handle text change
 },
 label = { Text("Input") }
)
 Text(text = "Example text")
 Button(onClick = {
 // Handle button click
 }) {
 Text(text = "Button")
 }
 }
}

26 Getting Started with Clean Architecture

In this example, we can see a screen that contains an input �eld, some text that displays
Example Text, and a button with the text Button. �e layout of the screen is de�ned
as a function annotated with the @Compose annotation. �is content is then set in an
activity through the setContent method, where a theme is provided. We will expand
on how Jetpack Compose works later in this book.

Now, let’s look at what our example code from the �e architecture of a legacy app
section will look like a�er we transition it through some of the aforementioned Android
frameworks and updates. All our code will now be migrated to Kotlin. We will be using
libraries such as Retro�t and Moshi for networking and JSON serialization and Hilt for
dependency injection, as well as ViewModel, LiveData, and Compose for the UI layer. We
will discuss how these libraries work in the following chapters.

�e ConcreteData class will look this:

@JsonClass(generateAdapter = true)
data class ConcreteData(
 @Json(name = "field1") val field1: String,
 @Json(name = "field1") val field2: String
)

�e ConcreteData class is now a Kotlin data class and will use the Moshi library for
JSON conversion. Next, let’s see what our HTTP request will look like when we use
something such as Retro�t to handle our HTTP communication:

interface ConcreteDataService {

 @GET("/path")
 suspend fun getConcreteData(): ConcreteData
}

Because we use Retro�t and OkHttp, we only need to de�ne the template for the endpoint
we want to connect to and the data we want; the libraries will handle the rest. �e
suspend keyword will come in handy for Kotlin �ows.

Now, let’s de�ne a repository class that will be responsible for invoking this HTTP call on
a separate thread:

class ConcreteDataRepository @Inject constructor(private val
concreteDataService: ConcreteDataService) {

 fun getConcreteData(): Flow<ConcreteData> {

Exploring the evolution of Android 27

 return flow {
 val fooList = concreteDataService.
 getConcreteData()
 emit(fooList)
 }.flowOn(Dispatchers.IO)
 }
}

ConcreteDataRepository will have a dependency on ConcreteDataService,
which it will call to fetch the data. It will be responsible for retrieving the data
on a separate thread by using Kotlin �ows. �e constructor will be annotated
with the @Inject annotation because we are using Hilt, which will inject
ConcreteDataService into ConcreteDataRepository.

Now, let’s create a ViewModel that will depend on the repository to load the
appropriate data:

@HiltViewModel
class MainViewModel @Inject constructor(private val
concreteDataRepository: ConcreteDataRepository) :
 ViewModel() {

 private val _concreteData = MutableLiveData
 <ConcreteData>()
 val concreteData: LiveData<ConcreteData> get() =
 _concreteData

 fun loadConcreteData() {
 viewModelScope.launch {
 concreteDataRepository.getConcreteData()
 .collect { data ->
 _concreteData.postValue(data)
 }
 }
 }
}

28 Getting Started with Clean Architecture

MainViewModel will then use ConcreteDataRepository to retrieve the data,
subscribe to the result, and post the result in LiveData, which MainActivity will
subscribe to.

Now, let’s create MainActivity:

@AndroidEntryPoint
class MainActivity : ComponentActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 Screen()
 }
 }
}

@Composable
fun Screen(mainViewModel: MainViewModel = viewModel()){
 mainViewModel.loadConcreteData()
 UpdateText()
}

@Composable
fun UpdateText(mainViewModel: MainViewModel = viewModel()) {
 val concreteData by mainViewModel.concreteData.
 observeAsState(ConcreteData("test", "test"))
 MessageView(text = concreteData.field1)

}

@Composable
fun MessageView(text: String) {
 Text(text = text)
}

MainActivity is now written using Jetpack Compose. It will trigger the data load when
the screen is created and then subscribe to LiveData from ViewModel, which will
update the text on the screen when the data is loaded.

Exploring the evolution of Android 29

Since we are using Hilt for dependency injection, we will need to de�ne our external
dependencies in a module, as follows:

@Module
@InstallIn(SingletonComponent::class)
class ApplicationModule {

 @Singleton
 @Provides
 fun provideHttpClient(): OkHttpClient {
 return OkHttpClient
 .Builder()
 .readTimeout(15, TimeUnit.SECONDS)
 .connectTimeout(15, TimeUnit.SECONDS)
 .build()
 }
}

First, we must provide the OkHttp client, which is used to make the HTTP requests.

Next, we will need to provide the JSON serialization:

@Module
@InstallIn(SingletonComponent::class)
class ApplicationModule {
 …
 @Singleton
 @Provides
 fun provideConverterFactory(): MoshiConverterFactory =
MoshiConverterFactory.create()
}

We are using the Moshi library for JSON serialization, so we will have to provide a Factory
that will be used by Retro�t for JSON conversion.

Next, we need to provide a Retro�t object:

@Module
@InstallIn(SingletonComponent::class)
class ApplicationModule {

30 Getting Started with Clean Architecture

 …
 @Singleton
 @Provides
 fun provideRetrofit(
 okHttpClient: OkHttpClient,
 gsonConverterFactory: MoshiConverterFactory
): Retrofit {
 return Retrofit.Builder()
 .baseUrl("schema://host.com")
 .client(okHttpClient)
 .addConverterFactory(gsonConverterFactory)
 .build()
 }
}

�e Retro�t object will need a base URL that will act as the host for our backend service,
OkHttpClient, and the JSON converter factory, which were provided earlier.

Finally, we will need to provide the template we de�ned previously:

@Module
@InstallIn(SingletonComponent::class)
class ApplicationModule {

 @Singleton
 @Provides
 fun provideConcreteDataService(retrofit: Retrofit):
 ConcreteDataService =
 retrofit.create(ConcreteDataService::class.java)
}

Here, we will use Retro�t to create an instance of ConcreteDataService that will be
injected into ConcreteDataRepository by Hilt.

Finally, we need to initialize Hilt in the Application class:

@HiltAndroidApp
class MyApplication : Application()

Enter clean architecture 31

�is code represents a 10-year jump in time when it comes to Android development.
Going back to the questions we asked for the initial example in the Legacy analysis
section, we can see that we answered quite a few. If we want to introduce persistence into
the application, we now have a repository that can manage that for us. We also have a
lot of classes that can be individually unit tested because of the introduction of Hilt and
because we have delimited separated from the Android framework dependencies. We have
also introduced �ows, which allow us to manipulate and handle the data in case we need
to connect to multiple sources and handle multi-threading more easily. �e introduction
of Kotlin and Retro�t also allowed us to reduce the amount of code. If we were to make a
diagram of this, it would look as follows:

Figure 1.4 � A class diagram for a newer Android application

Here, we can see that the dependencies between the classes go from one direction to the
other, which is another positive. �e introduction of Retro�t saved us a lot of hassle when
dealing with HTTP requests. But an issue remains with regards to how ConcreteData is
handled. We can see that it travels from ConcreteDataService into MainActivity.
Imagine if we wanted to provide the data from a di�erent URL with a di�erent POJO
representation. �is means that all of the classes will have to be changed to accommodate
for this. �is violates the single responsibility principle because the ConcreteData
class is used to serve multiple actors in our application. In the next section, we will try
to seek a solution to this problem and address ways to properly structure our classes and
components.

With that, we have explored the evolution of the Android platform and tools, what an
application may look like using the latest tools and libraries, and how this evolution solved
many problems developers had in the past. However, we still haven’t solved all of them. In
the next section, we will talk about the concept of clean architecture and how we can use it
to make our application �exible and more adaptable to changes.

Enter clean architecture
In this section, we will discuss the concept of clean architecture, the problems it solves,
and how it can be applied to an Android application.

32 Getting Started with Clean Architecture

Architecture can be viewed as the high-level solution that’s required to build a system
that can solve business and technical requirements. �e goal should be to keep as many
options on the table for as long as we can. From an Android development perspective,
we’ve seen the platform grow a lot, and to balance the new changes that have been added
to the platform with the addition of new features for our application and its maintenance,
we will need to give our application a very good foundation so that it will adapt to
changes. A common approach to architecture in Android development was the layered
architecture, where apps would be split into three layers � the user interface, domain, and
data layers. �e problem here was that the domain layer depended on the data layer, so
when the data layer changed, the domain layer needed to change too.

Clean architecture represents an integration of multiple types of architecture that provide
independence from frameworks, user interfaces, and databases, as well as being testable.
�e shape resembles that of an onion, where dependencies go toward the inner layers.
�ese layers are as follows:

�	 Entity Layer: �is layer is the innermost layer and is represented by objects that
hold data or business-critical functions.

�	 Use Case Layer: �is layer implements the business logic of the system.

�	 Interface Adapter Layer: �is layer is responsible for converting the data between
the frameworks and drivers and the use case. �is will hold components such as
ViewModels and presenters, as well as various converters that are responsible for
converting network and persistence-related data into entities.

�	 Frameworks and Drivers Layer: �is layer is the outermost layer and is comprised
of components such as activities, fragments, networking components, and
persistence components.

Let’s consider a scenario: you’ve recently been hired by a start-up company as their �rst
Android engineer. You have been given a basic idea of what the app that you’ve been asked
to develop should do, but there isn’t anything too concrete; the user interface has not been
�nalized, the teams working on the backend are new themselves, and there isn’t anything
too concrete on their side either. What you do know is a set of use cases that specify
what the app does: log into a system, load a list of tasks and add new tasks, delete tasks,
and edit existing tasks. �e product owner tells you that you should work on something
while using mock data so that they can get a feel of the product and consult with the user
interface and user experience teams to discuss improvements and modi�cations.

Enter clean architecture 33

You are faced with a choice here: you can build the product that’s been requested by the
product owner as fast as possible and then constantly refactor your code for each new
integration and the change in requirements, or you can take a little bit more time and
factor in the future changes that will come into your approach. If you were to take the
�rst approach, then you would �nd yourself in a situation where many developers found
themselves, which is to go back and change things properly. Let’s assume you chose the
second approach. What would you need to do then? You can start decoupling your code
into separate layers. You know that the UI will change, so you will need to keep it isolated
so that when it is changed, the change will only be isolated to that particular section.
O�en, the UI is referred to as the presentation layer.

Next, you want to decouple the business logic. �is is something speci�c to processing
the data that your app will use. �is is o�en done in the domain layer. Finally, you want
to decouple how the data is loaded and stored. �is will be the part where you deal with
integrating libraries such as Room and Retro�t and it’s o�en called the data layer. Because
the requirements aren’t de�nitive yet, you also want to decouple how you want to handle
use cases so that if a use case changes, you can protect the others from that change. If you
were to rotate the class diagram from Figure 1.4, you would see a layered approach to
this example.

As we’ve mentioned previously, the fact that ConcreteData shows up in all the classes
in our example is not a good idea. �is is because, at the end of the day, the fact that we
chose Retro�t and Moshi shouldn’t impact the rest of the application. �is is similar if it
was the opposite way around and the activity or ViewModel would’ve done the same.
At the end of the day, the way we choose to implement our UI or what networking
library we should use represent details. Our domain layer shouldn’t be impacted by
any of these choices.

What we are doing here is establishing boundaries between the components in our
system so that a change in a component doesn’t impact a change in another component.
In Android, even if we use the latest libraries and frameworks, we should still make sure
that our domain is still protected by changes in those frameworks. Going back to the
start-up example, and assuming you’ve chosen to decouple your components and pick the
appropriate boundaries, a�er many demos and iterations, your company decides to hire
additional developers to work on new, separate features. If those developers follow the
guidelines you’ve set up, they can work with a minimal level of overlap.

�e recommendation from Android development documentation is to take advantage of
modules. One of the arguments is that it improves build speed because when you work
on a certain module, it won’t rebuild the others when you build the application � it caches
them instead. Splitting your application into multiple modules serves another purpose.

34 Getting Started with Clean Architecture

Let’s go back to the start-up. �ings are going great and people love your product, so your
company decides to open your APIs for other businesses to integrate into their systems.
Your company also wants to provide an Android library so that it’s easier for businesses
to access your APIs. You already have this logic integrated into your application; you
just need to export it. What features do you want to export? All? None? Do they want to
persist data locally? Do they want some of the UI or not? If your modules were split with
proper boundaries, then you would be able to accommodate all of those features. What we
want to do is have a system where we can easily plug things in and easily plug them out.

Transitioning our previous example to this approach, we would have something like this.
�e ConcreteData class and ConcreteDataService would remain the same:

@JsonClass(generateAdapter = true)
data class ConcreteData(
 @Json(name = "field1") val field1: String,
 @Json(name = "field1") val field2: String
)

interface ConcreteDataService {

 @GET("/path")
 suspend fun getConcreteData(): ConcreteData
}

Now, we will need to isolate the Retro�t library and create the interface adapter for it. But
to do that, we will need to de�ne our entity:

data class ConcreteEntity(
 val field1: String,
 val field2: String
)

It looks like it’s a duplicate of ConcreteData, but this is a case of fake duplication. In
reality, as things evolve, the two classes may contain di�erent data, so they will need to be
separated.

To isolate the Retro�t call, we need to invert the dependency of our repository. So, let’s
create a new interface that will return ConcreteEntity:

interface ConcreteDataSource {

Enter clean architecture 35

 suspend fun getConcreteEntity(): ConcreteEntity
}

In our implementation, we will invoke the Retro�t service interface:

class ConcreteDataSourceImpl(private val concreteDataService:
ConcreteDataService) :
 ConcreteDataSource {

 override suspend fun getConcreteEntity():
 ConcreteEntity {
 val concreteData = concreteDataService.
 getConcreteData()
 return ConcreteEntity(concreteData.field1,
 concreteData.field2)
 }
}

Here, we have invoked ConcreteDataService and then converted the network model
into an entity.

Now, our repository will change into the following:

class ConcreteDataRepository @Inject constructor(private val
concreteDataSource: ConcreteDataSource) {

 suspend fun getConcreteEntity(): ConcreteEntity {
 return concreteDataSource.getConcreteEntity()
 }

ConcreteDataRepository will depend on ConcreteDataSource to avoid the
dependencies on the networking layer.

Now, we need to build the use case to retrieve ConcreteEntity:

class ConcreteDataUseCase @Inject constructor(private val
concreteDataRepository: ConcreteDataRepository) {

 fun getConcreteEntity(): Flow<ConcreteEntity> {

36 Getting Started with Clean Architecture

 return flow {
 val fooList = concreteDataRepository.
 getConcreteEntity()
 emit(fooList)
 }.flowOn(Dispatchers.IO)
 }
}

ConcreteDataUseCase will depend on ConcreteDataRepository to retrieve the
data and emit it using Kotlin �ows.

Now, MainViewModel will need to be changed to invoke the use case. To do so, it will
use the field1 object from ConcreteEntity:

@HiltViewModel
class MainViewModel @Inject constructor(private val
concreteDataUseCase: ConcreteDataUseCase) :
 ViewModel() {

 private val _textData = MutableLiveData<String>()
 val textData: LiveData<String> get() = _textData

 fun loadConcreteData() {
 viewModelScope.launch {
 concreteDataUseCase.getConcreteEntity()
 .collect { data ->
 _textData.postValue(data.field1)
 }
 }
 }
}

MainViewModel will now depend on ConcreteDataUseCase and retrieve
ConcreteEntity, where it will extract field1. �is will then be set in LiveData.

MainActivity will be updated to use the textData object from MainViewModel:

@AndroidEntryPoint
class MainActivity : ComponentActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {

Enter clean architecture 37

 super.onCreate(savedInstanceState)
 setContent {
 Screen()
 }
 }
}

@Composable
fun Screen(mainViewModel: MainViewModel = viewModel()){
 mainViewModel.loadConcreteData()
 UpdateText()
}

@Composable
fun UpdateText(mainViewModel: MainViewModel = viewModel()) {
 val text by mainViewModel.textData.
 observeAsState("test")
 MessageView(text = text)

}

@Composable
fun MessageView(text: String) {
 Text(text = text)
}

With that, MainActivity has been updated to use LiveData, which emits a String
instead of a ConcreteData object.

Finally, the Hilt module will be updated as follows:

@Module
@InstallIn(SingletonComponent::class)
class ApplicationModule {
 …
 @Singleton
 @Provides
 fun provideHttpClient(): OkHttpClient {

38 Getting Started with Clean Architecture

 return OkHttpClient
 .Builder()
 .readTimeout(15, TimeUnit.SECONDS)
 .connectTimeout(15, TimeUnit.SECONDS)
 .build()
 }

 @Singleton
 @Provides
 fun provideConverterFactory(): MoshiConverterFactory =
 MoshiConverterFactory.create()

 @Singleton
 @Provides
 fun provideRetrofit(
 okHttpClient: OkHttpClient,
 gsonConverterFactory: MoshiConverterFactory
): Retrofit {
 return Retrofit.Builder()
 .baseUrl("schema://host.com")
 .client(okHttpClient)
 .addConverterFactory(gsonConverterFactory)
 .build()
 }

 @Singleton
 @Provides
 fun provideCurrencyService(retrofit: Retrofit):
 ConcreteDataService =
 retrofit.create(ConcreteDataService::class.java)

 @Singleton
 @Provides
 fun provideConcreteDataSource(concreteDataService:
 ConcreteDataService): ConcreteDataSource =
 ConcreteDataSourceImpl(concreteDataService)
}

Enter clean architecture 39

Here, we can see that ConcreteDataUseCase just invokes
ConcreteDataRepository, which just invokes ConcreteDataSource. You
may be wondering why this boilerplate is necessary. In this case, we have a bit of fake
duplication. As the code grows, ConcreteDataRepository may connect to other data
sources, and ConcreteDataUseCase may need to connect to multiple repositories to
combine the data. �e same can be said about ConcreteData and ConcreteEntity.
Another bene�t of this approach is the imposition of more rigor when it comes to
development, and it creates consistency.

Let’s look at the following diagram and see how it compares to Figure 1.4:

Figure 1.5 � Clean architecture

If we look at the top row, we will see the use case and the entity. We can also see that the
dependencies go from the classes at the bottom toward the classes at the top, similar to
how the dependencies go from the outer layers toward the inner layers here. A di�erence
you may have noticed is that our example doesn’t mention the usage of modules. Later in
this book, we will explore how to apply clean architecture to multiple modules and how to
manage them.

40 Getting Started with Clean Architecture

We are now back in the start-up, and you started working on the application, where you
have de�ned a few entities and use cases and have put a simple UI in place. �e product
owner has asked you to deliver a demo with some mock data for tomorrow. What can
you do? You can create a new implementation of your data source and plug in some mock
objects that you can use to satisfy the conditions for the demo. You show the demo of the
application and you receive some feedback about your UI. �is means you can change
your activities and fragments to render the data appropriately, and this won’t impact
any of the other components. What would happen if the use case were to change? In
that situation, this would propagate into the rest of the other layers. �is depends on the
change, though, but this scenario is to be expected in this situation.

Summary
In this chapter, we explored what an Android app used to look like and all the problems
developers would face at the time. We’ve looked at some of the most important so�ware
design principles, such as SOLID, to get a better understanding of how to improve our
code and how these principles helped the Android platform evolve. We also looked
at the adoption of a new programming language that came with the introduction
of new so�ware paradigms, the addition of event-based libraries and frameworks,
the introduction of architecture components to help developers write more testable
applications, and a new way to build user interfaces. Finally, we introduced clean
architecture, which helps us build maintainable, testable, and more independent
applications. We looked at all of these changes through a small example, where we
saw them transition from what they may have looked like in 2010 to what they may look
like now.

In the next chapter, we will deep dive into the libraries that are required for loading,
storing, and managing data on Android. We will combine them to build an app using
clean architecture.

2
Deep Diving into

Data Sources
In this chapter, we will study some of the popular libraries and frameworks used for
retrieving and managing data on Android and how to do this without blocking the
main thread of an application. We will start by going over how multithreading should be
handled in an Android application and the available technologies we now have to easily
handle this. We will then move on to implement loading data from the internet using
libraries such as Retro�t and OkHttp, a�er which we will look at how we can persist data
on a device using libraries such as Room and DataStore.

In this chapter, we will cover the following main topics:

�	 Understanding Kotlin coroutines and �ows

�	 Using OkHttp and Retro�t for networking

�	 Using the Room library for data persistence

�	 Understanding and using the DataStore library

By the end of this chapter, you will have become familiar with how we can load, manage,
and persist data in an Android application.

42 Deep Diving into Data Sources

Technical requirements
�is chapter has the following hardware and so�ware requirements:

�	 Android Studio Arctic Fox 2020.3.1 Patch 3

�e code �les for this chapter can be found here:

https://github.com/PacktPublishing/Clean-Android-Architecture/
tree/main/Chapter2

Check out the following video to see the Code in Action: https://bit.ly/38uecPi

Understanding Kotlin coroutines and Flows
In this section, we will look at how threading works in the Android ecosystem and what
applications must do to ensure that long-running operations do not block the user from
using an application. We will then look at what available options we have available to
execute operations in the background, with a focus on coroutines. Finally, we will look
over Kotlin �ows, which we can use to handle asynchronous work using a reactive and
functional approach.

Android applications normally run in a single process on a user’s device. When the
operating system starts the application’s process, it will allocate memory resources for
the process to be executed. �is process, when started, will have one thread of execution
running within. �is thread is referred to as the "main thread" or "user interface (UI)
thread". In Android, this concept is very important because it is the thread that deals with
user interaction. �is imposes certain limitations for developers when dealing with it, as
outlined here:

�	 �e main thread must not be blocked by long-running or input/output (I/O)
operations.

�	 All updates to the UI must be done on the main thread.

�e idea is that the user should still be able to interact with an application as much as
possible even if the application is doing some work. Every time we want to load and save
data from or to the internet, local storage, content providers, and so on, we should use
another thread or use multiple threads. �e way the device’s processor deals with multiple
threads is by assigning a core for each thread. When there are more threads than cores, it
will jump back and forth between every single instruction from each thread. Having too
many threads being executed simultaneously will end up creating a bad user experience
(UX) because the processor will now need to jump between the main thread and the rest
of the threads being executed at the same time, so we will need to be mindful of how
many threads are being executed concurrently.

Understanding Kotlin coroutines and Flows 43

In Java, a thread can be created using the Thread class; however, creating a new thread
for every asynchronous operation is a very resource-expensive operation. Java also o�ers
the concept of ThreadPool or Executor. �ese typically manage �xed a collection
of threads that will be reused for di�erent operations. Because of the Android restriction
regarding updating the UI on the main thread, classes such as Handler and Looper
were introduced, whereby you can submit the result of an operation performed on
a background thread back on the main thread. An example of this is provided here:

class MyClass {

 fun asyncSum(a: Int, b: Int, callback: (Int) -> Unit) {
 val handler = Handler(Looper.getMainLooper())
 Thread(Runnable {
 val result = a + b
 handler.post(Runnable {
 callback(result)
 })
 }).start()
 }
}

In the preceding code snippet, the sum of two numbers will be performed on a new
thread, and the result will then be posted back using the Handler object that is
connected to the main Looper object, which itself will loop the main thread.

�e repeated usage of Handler and Looper gave birth to AsyncTask, which o�ers the
possibility of moving the necessary operations on a background thread and receiving the
result on the main thread. AsyncTask worked with the same principle as the preceding
example, only instead of creating a new thread for every new operation, it would by
default use the same thread (although this later became con�gurable), which means that if
two AsyncTask instances were executed at the same time, one would wait a�er the other.
An example of the same sum operations might look like this:

 fun asyncSum(a: Int, b: Int, callback: (Int) -> Unit) {
 object : AsyncTask<Nothing, Nothing, Int>() {

 override fun doInBackground(vararg params:
 Nothing?): Int {
 return a+b
 }

44 Deep Diving into Data Sources

 override fun onPostExecute(result: Int) {
 super.onPostExecute(result)
 callback(result)
 }

 }.execute()
 }

In the preceding example, the sum is done in the doInBackground method, which is
executed on a separate thread, and the onPostExecute method would be executed on
the main thread.

Let’s now imagine that we want to chain these sums and apply them multiple times, as
follows:

 fun asyncComplicatedSum(a: Int, b: Int, c: Int) {
 asyncSum(a, b) { tempSum ->
 asyncSum(tempSum, c) { finalSum ->
 Log.d(this.javaClass.name, "Final sum
 $finalSum")
 }
 }
 }

In the preceding example, we try to sum two numbers and add the result to number c. As
you can see, we need to use the callback and wait for a and b to �nish and then apply the
same function to the result of a+b and the number c.

Let’s imagine what an application might look like when having to deal with loading data
from multiple data sources, merging them together, handling errors, and stopping the
asynchronous execution if the user leaves the current activity or fragment. �e RxJava
library tries to tackle all these problems through an event-driven approach. It introduces
the concepts of streams and �ows of data that can be observed, transformed, merged with
other data streams, and executed on di�erent threads. �e sum of two numbers in RxJava
might look something like this:

fun asyncSum(a: Int, b: Int): Single<Int> {
 return Single.create<Int> {
 it.onSuccess(a + b)

Understanding Kotlin coroutines and Flows 45

 }.subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 }

In the preceding example, we create a Single instance, which is a stream that emits
only one value (for emitting multiple values, we have the Flowable and Observable
options). �e value emitted is the sum of the two numbers. �e usage of subscribeOn is
for executing the upstream (the sum) on an I/O thread managed by RxJava internally, and
the usage of observeOn is to have everything downstream (all the commands that will
follow) to get the result on the main thread.

If we want to chain multiple sums, then we would have something like this:

fun asyncComplicatedSum(a: Int, b: Int, c: Int) {
 val disposable = asyncSum(a, b)
 .flatMap {
 asyncSum(it, c)
 }
 .subscribe ({
 Log.d(this.javaClass.name, "Final sum $it")
 },{
 Log.d(this.javaClass.name, "Something went
 wrong")
 })
 }

In the preceding example, the sum of a and b is executed, then through the flatMap
operator, we add c to that result. �e usage of subscribe method is for triggering
sums and listening for the results. �is is because the Single instance used is a cold
observable; it will only be executed only when subscribe is called. �ere is also the
concept of hot observables, which will emit whether there are subscribers or not. �e
result of the subscribe operator will return a Disposable instance that o�ers a
dispose method that can be called when we want to stop listening for data from the
stream. �is is useful in situations where our activities and fragments are destroyed, and
we don’t want to update our UI to avoid context leaks.

46 Deep Diving into Data Sources

Kotlin coroutines
So far, we have analyzed technologies that revolve around the Java and Android
frameworks. With the adoption of Kotlin, other technologies have emerged that deal
with multithreading and are Kotlin-speci�c. One of these is the concept of coroutines.
Coroutines simplify the way we write asynchronous code. Instead of dealing with
callbacks, coroutines introduce the concept of scopes where we can specify which
threads our blocks of code will execute in. �e scopes can also connect to lifecycle-aware
components that help us unsubscribe from the results of asynchronous work when our
lifecycle-aware components terminate. Let’s look at the following example of coroutines
for the same sum:

 suspend fun asyncSum(a: Int, b: Int): Int {
 return withContext(Dispatchers.IO) {
 a + b
 }
 }

In the preceding example, the withContext method will execute the block of code
inside it in the threads managed by the I/O dispatcher. �e number of threads associated
with this dispatcher is managed internally by the Kotlin framework and is associated
with the number of cores the processor of the device has. �is o�en means that we don’t
have to worry about the performance of our applications when multiple asynchronous
operations are executed concurrently. Another interesting thing to note in the example is
the usage of the suspend keyword. �is is to alert the caller of this method that it will be
executed using coroutines on a separate thread.

Now, let’s see what things will look like when we want to invoke this method. Have a look
at the following code snippet:

class MyClass : CoroutineScope {
 override val coroutineContext: CoroutineContext
 get() = Dispatchers.Main + job

 private lateinit var job: Job

 fun asyncComplicatedSum(a: Int, b: Int, c: Int) {
 launch {
 try {
 val tempSum = asyncSum(a, b)
 val finalSum = asyncSum(tempSum, c)

Understanding Kotlin coroutines and Flows 47

 Log.d(this.javaClass.name, "Final sum
 $finalSum")
 } catch (e: Exception) {
 Log.d(this.javaClass.name, "Something went
 wrong")
 }
 }
 }

 fun create() {
 job = Job()
 }

 fun destroy() {
 job.cancel()
 }
}

In asyncComplicatedSum, we use the launch method. �is method is associated
with the CoroutineContext object de�ned in this class. �e context is de�ned using
the Main dispatcher combined with the Job object that will be associated with the
lifecycle of this object. If the destroy method is called while we are waiting for the result
of the sum, then the execution of the sum will stop and we will stop getting the result of
the sum. �e code will execute each of the sums on the I/O thread and then execute log
statements on the main thread if the job is still alive.

In Android, we already have a few CoroutineScope objects already de�ned
and associated with our lifecycle-aware classes. One that will be relevant to us is
the one de�ned for ViewModels. �is can be found in the org.jetbrains.
kotlinx:kotlinx-coroutines-android library and will look something like this:

class MyViewModel: ViewModel() {
 init {
 viewModelScope.launch { }
 }
}

Understanding Kotlin coroutines and Flows 49

 OutlinedTextField(
 value = b,
 onValueChange = onBChanged,
 keyboardOptions = KeyboardOptions
 (keyboardType = KeyboardType.Number),
 label = { Text("b") }
)
 Text(text = result)
 Button(onClick = onButtonClick) {
 Text(text = "Calculate")
 }
 }
}

Follow these steps to complete the exercise:

1.	 Create a new project in Android Studio using an Empty Compose Activity.
2.	 At the top level of the build.gradle �le, de�ne the Compose library version

as follows:

buildscript {
 ext {
 compose_version = '1.0.5'
 }
 …
}

3.	 In the app/build.gradle �le, we need to add the following dependencies:

dependencies {
 implementation 'androidx.core:core-ktx:1.7.0'
 implementation 'androidx.appcompat:appcompat:1.4.0'
 implementation 'com.google.android.
material:material:1.4.0'
 implementation "androidx.compose.ui:ui:$compose_
version"
 implementation "androidx.compose.
material:material:$compose_version"
 implementation "androidx.compose.ui:ui-tooling-

50 Deep Diving into Data Sources

preview:$compose_version"
 implementation 'androidx.lifecycle:lifecycle-runtime-
ktx:2.4.0'
 implementation 'androidx.activity:activity-
compose:1.4.0'
 implementation 'org.jetbrains.kotlinx:kotlinx-
coroutines-android:1.5.0'
 implementation "androidx.lifecycle:lifecycle-
viewmodel-ktx:2.4.0"
 implementation "androidx.lifecycle:lifecycle-
viewmodel-compose:2.4.0"
 testImplementation 'junit:junit:4.13.2'
 androidTestImplementation 'androidx.test.
ext:junit:1.1.3'
 androidTestImplementation 'androidx.test.
espresso:espresso-core:3.4.0'
 androidTestImplementation "androidx.compose.ui:ui-
test-junit4:$compose_version"
 testImplementation "org.jetbrains.kotlinx:kotlinx-
coroutines-test:1.5.0"
 debugImplementation "androidx.compose.ui:ui-
tooling:$compose_version"
}

4.	 Start by creating a NumberAdder class and de�ne an add operation and a delay,
as follows:

private const val DELAY = 5000
class NumberAdder(
 private val dispatcher: CoroutineDispatcher =
 Dispatchers.IO,
 private val delay: Int = DELAY
) {

 suspend fun add(a: Int, b: Int): Int {
 return withContext(dispatcher) {
 delay(delay.toLong())
 a + b

Understanding Kotlin coroutines and Flows 51

 }
 }
}

In this class, we will add our 5-second delay before performing the sum of
the two numbers. �is is to highlight the asynchronous operation more.
CoroutineDispatcher and the amount we want to delay by will be injected
through the constructor. �is is because we want to unit-test this class.

5.	 Next, we will need to unit-test this class. Before we write the test, create a test rule so
that we can reuse it for coroutines, as follows:

class DispatcherTestRule : TestRule {

 @ExperimentalCoroutinesApi
 val testDispatcher = TestCoroutineDispatcher()

 @ExperimentalCoroutinesApi
 override fun apply(base: Statement?, description:
 Description?): Statement {
 try {
 Dispatchers.setMain(testDispatcher)
 base?.evaluate()
 } catch (e: Exception) {

 } finally {
 Dispatchers.resetMain()
 testDispatcher.cleanupTestCoroutines()
 }
 return base!!
 }
}

In this class, we create a TestCoroutineDispatcher instance that will
later be injected into the unit test so that the test can execute the sum in a
synchronous way. @ExperimentalCoroutinesApi suggests that the usage of
TestCoroutineDispatcher is still in an experimental state and will be moved
to a stable version in the future.

52 Deep Diving into Data Sources

6.	 Now, write the unit test for the class, in the form of NumberAdderTest, as
follows:

class NumberAdderTest {

 @get:Rule
 val dispatcherTestRule = DispatcherTestRule()

 @ExperimentalCoroutinesApi
 @Test
 fun testAdd() = runBlockingTest {
 val adder = NumberAdder(dispatcherTestRule.
 testDispatcher, 0)
 assertEquals(5, adder.add(1, 4))

 }
}

Here, we inject the testDispatcher object we created in
DispatcherTestRule into NumberAdder, and we then invoke the add
function. �e entire test is executed in a special CoroutineScope block called
runBlockingTest, that will ensure all the coroutines launched must complete.

7.	 Next, go ahead and create a ViewModel class, like this:

class MainViewModel(private val adder: NumberAdder =
NumberAdder()) : ViewModel() {

 var resultState by mutableStateOf("0")
 private set

 fun add(a: String, b: String) {
 viewModelScope.launch {
 val result = adder.add(a.toInt(),
 b.toInt())
 resultState = result.toString()
 }
 }
}

Understanding Kotlin coroutines and Flows 53

Here, we use a Compose state that will retain the result of the addition, and a
method that will trigger the addition into viewModelScope.

8.	 A�er the ViewModel class has been created, go ahead and create an activity class,
as follows:

class MainActivity : ComponentActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 Exercise201Theme {
 Surface {
 Screen()
 }
 }
 }
 }
}

Here, we initialize our activity with the content. Exercise201Theme should be
replaced with the theme generated by Android Studio when the project was created.
Typically, this should be in a Theme �le and should be a @Composable function
that has the application name followed by the Theme su�x. If that is not available,
you can use MaterialTheme instead for the purpose of the exercise.

9.	 Next, create a Screen function, as follows:

@Composable
fun Screen(viewModel: MainViewModel = viewModel()) {
 var a by remember { mutableStateOf("") }
 var b by remember { mutableStateOf("") }
 Calculator(
 a = a,
 onAChanged = {
 a = it
 },
 b = b,
 onBChanged = {
 b = it
 },

54 Deep Diving into Data Sources

 result = viewModel.resultState,
 onButtonClick = {
 viewModel.add(a, b)
 })
}

In this method, we de�ne variables for our text �elds, then we pass the result
of the addition of the numbers from the ViewModel, and �nally, we invoke the
ViewModel to perform the addition.

10.	 And �nally, add the Calculator function from the exercise de�nition to the
MainActivity �le.

If we run the preceding example, we should see our UI elements, and a�er inserting the
numbers and clicking the button, we will get our result. One thing to notice is that the
user will be able to interact with the UI while the add method is executed, and clicking
multiple times for di�erent numbers will get the results 5 seconds a�er each button press.

Using coroutines can improve the quality of an Android application, especially when
combined with Android extensions for the ViewModel class and lifecycle-aware
components. Coroutines simplify the code we write for asynchronous operations, and
the addition of the suspend keyword can enforce more rigor when dealing with these
operations.

Kotlin Flows
Coroutines o�er a good solution for dealing with asynchronous operations; however, they
do not o�er a good ability to handle multiple streams of data in the same way RxJava does.
Flows represent an extension to coroutines, which is meant to solve this problem. When
dealing with �ows, there are three entities to consider, as outlined here:

�	 Producer: �is entity is responsible for emitting the data.

�	 Intermediary: �is entity deals with the transformation or manipulation of
the data.

�	 Consumer: �is entity consumes the data in the stream.

Let’s look at the following example of adding two numbers and how it might look like
using Kotlin �ows:

fun asyncSum(a: Int, b: Int): Flow<Int> {
 return flow {
 this.emit(a + b)

Understanding Kotlin coroutines and Flows 55

 }.flowOn(Dispatchers.IO)
 }

Here, we create a Flow object that will emit the result of a + b on a stream. �e flowOn
method will move the execution of the upstream on an I/O thread. Here, we note the
similarity to RxJava in the concept of how Flows work, but we also notice that it’s an
extension of coroutines because of the use of Dispatchers. Let’s now look at how �ows
look on the consumer side, as follows:

class MyClass : CoroutineScope {
 override val coroutineContext: CoroutineContext
 get() = Dispatchers.Main + job

 private lateinit var job: Job

 @FlowPreview
 fun asyncComplicatedSum(a: Int, b: Int, c: Int) {
 launch {
 asyncSum(a, b)
 .flatMapConcat {
 asyncSum(it, c)
 }
 .catch {
 Log.d(this.javaClass.name, "Something
 went wrong")
 }
 .collect {
 Log.d(this.javaClass.name, "Final sum
 $it")
 }
 }
 }
}

Here, we also notice similarities to RxJava�that is, when we try to manipulate the stream
to perform the addition to number c and when it comes to error handling due to the
catch method. �e collect method, however, is closer to coroutines, and it requires a
CoroutineScope to be used or to declare the calling method as a suspend one.

Understanding Kotlin coroutines and Flows 57

Here, we create a new Flow where we emit the sum of a and b, a�er which
we put a delay on each item emitted in the stream, and �nally, we specify the
CoroutineDispatcher instance we wish to execute the sum on.

2.	 Next, let’s modify the unit test for the sum, as follows:

class NumberAdderTest {

 @get:Rule
 val dispatcherTestRule = DispatcherTestRule()

 @ExperimentalCoroutinesApi
 @Test
 fun testAdd() = runBlockingTest {
 val adder = NumberAdder
 (dispatcherTestRule.testDispatcher, 0)
 val result = adder.add(1, 4).first()
 assertEquals(5, result)
 }
}

Because the add method returns a Flow object, we must now �nd the �rst item
emitted in the �ow and assert the value of that item against our expected result.

3.	 Modify the MainViewModel class to consume the add operation, as follows:

class MainViewModel(private val adder: NumberAdder =
NumberAdder()) : ViewModel() {

 var resultState by mutableStateOf("0")
 private set

 fun add(a: String, b: String) {
 viewModelScope.launch {
 adder.add(a.toInt(), b.toInt())
 .collect {
 resultState = it.toString()
 }
 }
 }
}

Using OkHttp and Retro�t for networking 59

 implementation "com.squareup.retrofit2:retrofit:2.9.0"
 …
}

Next, we will need to determine which converters we will need to use for the data. Because
JSON is a common format, we will use a JSON converter and the Moshi library to do so,
so we will need to add dependencies to these two libraries, as follows:

dependencies {
 …
 implementation "com.squareup.okhttp3:okhttp:4.9.0"
 implementation "com.squareup.retrofit2:retrofit:2.9.0"
 implementation "com.squareup.retrofit2:converter-
moshi:2.9.0"
 implementation "com.squareup.moshi:moshi:1.13.0"
 …
}

Here, the Moshi library will be responsible for converting POJOs into JSON, and the
converter library will plug into the Retro�t library and trigger this conversion when data
is exchanged between the Android application and the server.

Let’s assume we will need to fetch data from a server in a JSON format. We can use the
https://jsonplaceholder.typicode.com/ service as an example. If we want to
fetch a list of users, we can use the https://jsonplaceholder.typicode.com/
users Uniform Resource Locator (URL). A user’s JSON representation looks like this:

{
"id": 1,
 "name": "Leanne Graham",
 "username": "Bret",
 "email": "Sincere@april.biz",
 "address": {
 "street": "Kulas Light",
 "suite": "Apt. 556",
 "city": "Gwenborough",
 "zipcode": "92998-3874",
 "geo": {
 "lat": "-37.3159",

60 Deep Diving into Data Sources

 "lng": "81.1496"
 }
 },
 "phone": "1-770-736-8031 x56442",
 "website": "hildegard.org",
 "company": {
 "name": "Romaguera-Crona",
 "catchPhrase": "Multi-layered client-server neural-
 net",
 "bs": "harness real-time e-markets"
 }

We can see in the JSON representation that the user has an id, a username, an
email value, and so on. In Kotlin, we can create a representation of this, and we can
exclude properties that the application doesn’t need, such as email, address, phone,
website, and company, as follows:

 data class User(
 @Json(name = "id") val id: Long,
 @Json(name = "name") val name: String,
 @Json(name = "username") val username: String
)

Here, we are using Moshi to map the property from a JSON to a Kotlin type, and we only
kept three of the �elds present in the initial JSON. Now, let’s look at how we can initialize
our networking libraries. �e code to accomplish this is shown in the following snippet:

 fun createOkHttpClient() = OkHttpClient
 .Builder()
 .readTimeout(15, TimeUnit.SECONDS)
 .connectTimeout(15, TimeUnit.SECONDS)
 .build()

For OkHttp, we use a Builder method to create a new OkHttpClient instance,
and we can provide certain con�gurations for it. We will now use the OkHttpClient
instance created previously to create a Retrofit instance, as follows:

fun createRetrofit(
 okHttpClient: OkHttpClient
): Retrofit {

Using OkHttp and Retro�t for networking 61

 return Retrofit.Builder()
 .baseUrl("https://jsonplaceholder.typicode.com/")
 .client(okHttpClient)
 .build()
 }

Here, we create a new Retrofit instance that will have the base URL set to https://
jsonplaceholder.typicode.com/. Changing the base URL comes in handy
during development. Many teams will have a development URL used internally to test
the development and integration of features and will have a production URL where the
actual user data is set. Now, we will need to connect the Moshi JSON serialization to the
Retrofit instance, as follows:

Fun createConverterFactory(): MoshiConverterFactory =
MoshiConverterFactory.create()

Here, we create MoshiConverterFactory, which is a Retro�t converter designed to
connect Retrofit to the JSON serialization done by Moshi. We will now need to change
our Retrofit initialization to what follows:

fun createRetrofit(
 okHttpClient: OkHttpClient,
 gsonConverterFactory: MoshiConverterFactory
): Retrofit {
 return Retrofit.Builder()
.baseUrl("https://jsonplaceholder.typicode.com/")
 .client(okHttpClient)
 .addConverterFactory(gsonConverterFactory)
 .build()
 }

Here, we add the MoshiConverterFactory converter to the Retro�t Builder
method to allow the two components to work together. Finally, we can create a Retro�t
interface that will have templates for the HTTP request, as follows:

interface UserService {

 @GET("/users")
 fun getUsers(): Call<List<User>>

62 Deep Diving into Data Sources

 @GET("/users/{userId}")
 fun getUser(@Path("userId") userId: Int):
 Call<User>

 @POST("/users")
 fun createUser(@Body user: User): Call<User>

 @PUT("/users/{userId}")
 fun updateUser(@Path("userId") userId: Int, @Body
 user: User): Call<User>
 }

�is interface contains an example of various methods for getting, creating, updating,
and deleting data on servers. Note that the return type of these methods is a Call object
that o�ers the ability to execute HTTP requests synchronously or asynchronously. One
of the things that makes Retro�t more appealing to developers is the fact that it can be
integrated with other asynchronous libraries such as RxJava and coroutines. Translating
the preceding example to coroutines will look something like this:

interface UserService {

 @GET("/users")
 suspend fun getUsers(): List<User>

 @GET("/users/{userId}")
 suspend fun getUser(@Path("userId") userId: Int):
 User

 @POST("/users")
 suspend fun createUser(@Body user: User): User

 @PUT("/users/{userId}")
 suspend fun updateUser(@Path("userId") userId: Int,
 @Body user: User): User
 }

64 Deep Diving into Data Sources

 }
}

Follow these steps to complete the exercise:

1.	 Create an Android application with an Empty Compose Activity.
2.	 At the top level of the build.gradle �le, de�ne the Compose library version, as

follows:

buildscript {
 ext {
 compose_version = '1.0.5'
 }
 …
}

3.	 In the app/build.gradle �le, add the following dependencies:

dependencies {
 implementation 'androidx.core:core-ktx:1.7.0'
 implementation 'androidx.appcompat:appcompat:1.4.0'
 implementation 'com.google.android.
material:material:1.4.0'
 implementation "androidx.compose.ui:ui:$compose_
version"
 implementation "androidx.compose.
material:material:$compose_version"
 implementation "androidx.compose.ui:ui-tooling-
preview:$compose_version"
 implementation 'androidx.lifecycle:lifecycle-runtime-
ktx:2.4.0'
 implementation 'androidx.activity:activity-
compose:1.4.0'
 implementation 'org.jetbrains.kotlinx:kotlinx-
coroutines-android:1.5.0'
 implementation "androidx.lifecycle:lifecycle-
viewmodel-ktx:2.4.0"
 implementation "androidx.lifecycle:lifecycle-
viewmodel-compose:2.4.0"
 implementation "com.squareup.okhttp3:okhttp:4.9.0"

Using OkHttp and Retro�t for networking 65

 implementation "com.squareup.retrofit2:retrofit:2.9.0"
 implementation "com.squareup.retrofit2:converter-
moshi:2.9.0"
 implementation "com.squareup.moshi:moshi:1.13.0"
 implementation "com.squareup.moshi:moshi-
kotlin:1.13.0"
 testImplementation 'junit:junit:4.13.2'
 androidTestImplementation 'androidx.test.
ext:junit:1.1.3'
 androidTestImplementation 'androidx.test.
espresso:espresso-core:3.4.0'
 androidTestImplementation "androidx.compose.ui:ui-
test-junit4:$compose_version"
 testImplementation "org.jetbrains.kotlinx:kotlinx-
coroutines-test:1.5.0"
 debugImplementation "androidx.compose.ui:ui-
tooling:$compose_version"
}

4.	 Now, add a permission for internet access to the AndroidManifest.xml �le, as
follows:

<uses-permission android:name="android.permission.
INTERNET"/>

5.	 Now move on and create a class that will hold the user information, as follows:

@JsonClass(generateAdapter = true)
data class User(
 @Json(name = "id") val id: Long,
 @Json(name = "name") val name: String,
 @Json(name = "username") val username: String,
 @Json(name = "email") val email: String
)

Here, we will hold the id �eld, which is generally a relevant �eld for distinguishing
between di�erent users and �elds that we are required to display.

6.	 Next, create a UserService class that will fetch the user data, as follows:

interface UserService {

66 Deep Diving into Data Sources

 @GET("/users")
 suspend fun getUsers(): List<User>

}

Here, we will only have one method that will get a list of users from the /users
path.

7.	 Now, we initialize the networking objects. Because we aren’t using any dependency
injection (DI) frameworks and we only need to create one instance of each, we will
hold the objects in the MainApplication class, as follows:

class MyApplication : Application() {

 companion object {
 lateinit var userService: UserService
 }

 override fun onCreate() {
 super.onCreate()
 val okHttpClient = OkHttpClient
 .Builder()
 .readTimeout(15, TimeUnit.SECONDS)
 .connectTimeout(15, TimeUnit.SECONDS)
 .build()
 val moshi = Moshi.Builder().
 add(KotlinJsonAdapterFactory()).build()
 val retrofit = Retrofit.Builder()
 .baseUrl("https://jsonplaceholder.typicode.
com/")
 .client(okHttpClient)
 .addConverterFactory(MoshiConverterFactory.
create(moshi))
 .build()
 userService = retrofit.create(UserService::class.
java)
 }
}

Using OkHttp and Retro�t for networking 67

Here, we are initializing our networking libraries and the UserService object.
Currently, we are holding a static reference to this object, which is not a good idea
in general. Normally, we would rely on DI frameworks to manage these networking
dependencies.

8.	 In the AndroidManifest.xml �le, add the following code:

 <application
 …
 android:name=".MyApplication"
 …>

Given that we are inheriting from the Application class, we will need to add this
class to the manifest.

9.	 Next, go ahead and create a MainViewModel class, as follows:

class MainViewModel(private val userService:
 UserService) : ViewModel() {

 var resultState by mutableStateOf
 <List<User>>(emptyList())
 private set

 init {
 viewModelScope.launch {
 val users = userService.getUsers()
 resultState = users
 }
 }
}

class MainViewModelFactory : ViewModelProvider.Factory {
 override fun <T : ViewModel> create(modelClass:
 Class<T>): T =
 MainViewModel(MyApplication.userService) as T
}

68 Deep Diving into Data Sources

�e MainViewModel class will depend on the UserService class to get a list
of Users and store them in a Compose state that will be used in the UI. Here, we
are also creating a MainViewModelFactory class that will be responsible for
injecting the UserService class into the MainViewModel class.

10.	 Now, we move on and create a MainActivity class, as follows:

class MainActivity : ComponentActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 Exercise0203Theme {
 Surface {
 Screen()
 }
 }
 }
 }
}

Here, we initialize our activity with the content. �e Exercise203Theme
theme should be replaced with the theme generated by Android Studio when the
project was created. Typically, this should be in a Theme �le and should be a @
Composable function that has the application name followed by the Theme su�x.
If that is not available, you can use MaterialTheme instead for the purpose of the
exercise.

11.	 Create a Screen method in which we will grab a list of users from the
MainViewModel class and draw a list of items, as follows:

@Composable
fun Screen(viewModel: MainViewModel = viewModel
 (factory = MainViewModelFactory())) {
 UserList(users = viewModel.resultState)
}

12.	 And �nally, add the UserList function from the exercise de�nition into the
MainActivity �le.

If we launch the application a�er following the steps from the exercise, we should be able
to see a list of users being loaded if the device has internet access.

Using the Room library for data persistence 69

In this section, we have seen how we can typically retrieve data from the internet in an
Android application. We have looked at libraries such as OkHttp and Retro�t and seen
how straightforward it is to make HTTP calls in a type-safe way without converting JSON
�les to data classes manually. We have also observed the potential of these libraries due
to their integration with asynchronous technologies such as RxJava and coroutines. In
the following section, we will look at libraries used for persisting data and how we can
integrate them with networking libraries as well as coroutines and �ows.

Using the Room library for data persistence
In this section, we will discuss how to persist data in Android applications and how we
can use the Room library to do this.

Android o�ers many ways for persisting data on an Android device, mostly involving �les.
Some of these �les have a specialized approach to persisting data. One of these approaches
is in the form of SQLite. SQLite is a special type of �le in which structured data can be
stored using Structured Query Language (SQL) queries, as with other types of databases
such as MySQL and Oracle.

In the past, if developers wanted to persist data in SQLite, they were required to
manually de�ne tables, write queries, and transform objects containing this data into the
appropriate formats for performing create, read, update, and delete (CRUD) operations.
�is type of work involved a load of boilerplate code that was susceptible to bugs. Room is
the answer to that by providing an abstraction layer on top of the SQLite operations.

In order to add Room to an application, we will need to add the following libraries in
build.gradle:

dependencies {
 …
 implementation "androidx.room:room-runtime:2.4.0"
 kapt "androidx.room:room-compiler:2.4.0"
 …
}

�e reason for the kapt usage is that Room uses annotations that will generate the code
required for the interaction with the SQLite layer. In order to use the kapt feature, we will
need to add the plugin to the build.gradle �le, as follows:

plugins {
 …

70 Deep Diving into Data Sources

 id 'kotlin-kapt'
}

�is will allow the build system to analyze annotations across the project that require code
generation and generate the necessary classes based on the provided annotations.

�e data we want to store is annotated with the @Entity annotation, as illustrated in the
following code snippet:

@Entity(tableName = "user")class UserEntity(
 @PrimaryKey @ColumnInfo(name = "id") val id: Long,
 @ColumnInfo(name = "name") val name: String,
 @ColumnInfo(name = "username") val username: String
)

Here, we have de�ned a Room entity named UserEntity that will represent a table
named user and has the primary key (PK) set to be the identi�er (ID) of the user. �e
@ColumnInfo annotation is for the name the column will have in the database.

A typical set of CRUD operations might look like this:

@Dao
interface UserDao {
 @Query("SELECT * FROM user")
 fun getAll(): List<UserEntity>

 @Query("SELECT * FROM user WHERE id IN (:userIds)")
 fun loadAllByIds(userIds: IntArray): List<UserEntity>

 @Insert
 fun insert(vararg users: User)

 @Update
 fun update(vararg users: User)

 @Delete
 fun delete(user: User)
}

Using the Room library for data persistence 71

Just as how we de�ned in Retro�t a service interface to communicate with the server,
we also de�ne a similar interface for Room that we annotate with @Dao, for data access
object (DAO). In this example, we have de�ned a set of functions for getting all users
stored in a table, �nding users, inserting new users, updating a user, and deleting a user.

As with Retro�t, Room also provides integrations with coroutines, as illustrated in the
following code snippet:

@Dao
interface UserDao {
 @Query("SELECT * FROM user")
 suspend fun getAll(): List<UserEntity>

 @Query("SELECT * FROM user WHERE id IN (:userIds)")
 suspend fun loadAllByIds(userIds: IntArray):
 List<UserEntity>

 @Insert
 suspend fun insert(vararg users: User)

 @Update
 suspend fun update(vararg users: User)

 @Delete
 suspend fun delete(user: User)
}

In the preceding example, we add the suspend keyword, which makes the Room library
easy to integrate and execute as part of a coroutine.

On top of coroutines, the Room library also can integrate with Kotlin �ows. �is is useful
for queries that will emit events every time a particular table has changed. �is integration
will look something like this:

@Dao
interface UserDao {
 @Query("SELECT * FROM user")
 fun getAll(): Flow<List<UserEntity>>

Using the Room library for data persistence 73

To complete the exercise, you will need to do the following:

1.	 Create a UserEntity class that will be a Room entity.
2.	 Create a UserDao class that will contain methods for inserting users and querying

all the users as �ows.
3.	 Create an AppDatabase class that will represent the application’s database.
4.	 Modify the MainViewModel class to fetch users from the UserService class

and then insert them into the UserDao class.
5.	 Modify the MainActivity class to use a list of UserEntity objects instead of

User objects.

Follow these steps to complete the exercise:

1.	 Add the kapt plugin to the app/build.gradle �le, as follows:

plugins {
 …
 id 'kotlin-kapt'
}

2.	 Add Room dependencies to app/build.gradle, as follows:

dependencies {
 …
 implementation "androidx.room:room-runtime:2.4.0"
 implementation "androidx.room:room-ktx:2.4.0"
 kapt "androidx.room:room-compiler:2.4.0"
 …
}

3.	 Create a UserEntity class, as follows:

@Entity(tableName = "user")
class UserEntity(
 @PrimaryKey @ColumnInfo(name = "id") val id: Long,
 @ColumnInfo(name = "name") val name: String,
 @ColumnInfo(name = "username") val username:
 String,
 @ColumnInfo(name = "email") val email: String
)

74 Deep Diving into Data Sources

�e UserEntity class has the same �elds as the User class, and it contains the
Room annotations for the table name and the names of each column.

4.	 Next, create a UserDao class, as follows:

@Dao
interface UserDao {

 @Query("SELECT * FROM user")
 fun getUsers(): Flow<List<UserEntity>>

 @Insert(onConflict = OnConflictStrategy.REPLACE)
 fun insertUsers(users: List<UserEntity>)
}

Here, we are using �ows to return a list of users, and we use the
OnConflictStrategy.REPLACE option so that if the same user is inserted
multiple times, then it will be replaced with the one that will be inserted. Other
options include OnConflictStrategy.ABORT, which will drop the entire
transaction if a con�ict occurs, or OnConflictStrategy.IGNORE, which will
skip inserting rows where a con�ict occurs.

5.	 Now, go ahead and create an AppDatabase class, as follows:

@Database(entities = [UserEntity::class], version = 1)
abstract class AppDatabase : RoomDatabase() {
 abstract fun userDao(): UserDao
}

In AppDatabase, we provide the UserDao class to be accessed and we use the
UserEntity class for the users’ table.

6.	 Next, we will need to initialize the AppDatabase object, as follows:

class MyApplication : Application() {

 companion object {
 …
 lateinit var userDao: UserDao
 …
 }

Using the Room library for data persistence 75

 override fun onCreate() {
 super.onCreate()
 …
 val db = Room.databaseBuilder(
 applicationContext,
 AppDatabase::class.java, "my-database"
).build()
 userDao = db.userDao()
 …
 }
}

Here, we are having the same issues that we had for Retro�t, so we will follow
the same approach and use the Application class. Just as with Retro�t, a DI
framework will help us solve this problem.

7.	 Now, let’s integrate Room into the MainViewModel class, as follows:

class MainViewModel(
 private val userService: UserService,
 private val userDao: UserDao
) : ViewModel() {

 var resultState by
mutableStateOf<List<UserEntity>>(emptyList())
 private set

 init {
 viewModelScope.launch {
 flow { emit(userService.getUsers()) }
 .onEach {
 val userEntities =
 it.map { user -> UserEntity
 (user.id, user.name,
 user.username, user.email) }
 userDao.insertUsers(userEntities)
 }.flatMapConcat { userDao.getUsers() }
 .catch { emitAll(userDao.getUsers()) }

76 Deep Diving into Data Sources

 .flowOn(Dispatchers.IO)
 .collect {
 resultState = it
 }
 }
 }
}
class MainViewModelFactory : ViewModelProvider.Factory {
 override fun <T : ViewModel> create(modelClass:
Class<T>): T =
 MainViewModel(MyApplication.userService,
MyApplication.userDao) as T
}

�e MainViewModel class now has a new dependency on the UserDao class. In
the init block, we now create a �ow in which we emit a list of users obtained from
Retro�t that is then converted into UserEntity and inserted into the database.
A�er this, we will query the UserEntities instances and return them in a stream
that will be the result. If we have an error, we will return the current stored users.

8.	 Finally, update the type of users in the MainActivity class, as follows:

class MainActivity : ComponentActivity() {
…
@Composable
fun UserList(users: List<UserEntity>) {
…
 }
}

Here, we just change the dependency to now rely on the UserEntity class.

If we run the application a�er following the steps from the exercise, we will see the same
output as for Exercise 02.03. However, if we close the application, turn on Airplane mode
on the device, and reopen the app, we will still see the previously displayed information.

In this section, we have analyzed how we can persist structured data on a device and
used the Room library to do so. We have also observed the interaction between Room
and other libraries such as Retro�t and �ows and how we can use �ows to combine data
streams from Room and Retro�t in a very straightforward way. In the next section, we will
look at how we can persist simple data in key-value pairs.

Understanding and using the DataStore library 77

Understanding and using the DataStore library
In this section, we will discuss how we can persist key-value pairs of data and how we
can use the DataStore library for this. In Android, we have the possibility of persisting
primitives and strings in key-value pairs. In the past, this was done through the
SharedPreferences class, which was part of the Android framework. �e keys and
values would ultimately be saved inside an XML �le on the device. Because this deals with
I/O operations, it evolved over time to give the possibility to save data asynchronously
and to keep an in-memory cache for quick access to data. �ere were, however, some
inconsistencies with this, especially when the SharedPreferences object was
initialized. DataStore is designed to address these issues because it’s integrated with
coroutines and �ows.

To add DataStore to a project, we will need the following dependency:

dependencies {
 …
 implementation "androidx.datastore:datastore-
preferences:1.0.0"
 …
}

Using DataStore will look something like this:

private val KEY_TEXT = stringPreferencesKey("key_text")
class AppDataStore(private val dataStore:
 DataStore<Preferences>) {

 val savedText: Flow<String> = dataStore.data
 .map { preferences ->
 preferences[KEY_TEXT].orEmpty()
 }

 suspend fun saveText(text: String) {
 dataStore.edit { preferences ->
 preferences[KEY_TEXT] = text
 }
 }
}

Understanding and using the DataStore library 79

Follow these steps to complete the exercise:

1.	 Add the following dependency to the app/build.gradle �le:

dependencies {
 …
 implementation "androidx.datastore:datastore-
 preferences:1.0.0"
 …
}

2.	 Create an AppDataStore class, as follows:

private val KEY_COUNT = intPreferencesKey("key_count")
class AppDataStore(private val dataStore:
 DataStore<Preferences>) {

 val savedCount: Flow<Int> = dataStore.data
 .map { preferences ->
 preferences[KEY_COUNT] ?: 0
 }

 suspend fun incrementCount() {
 dataStore.edit { preferences ->
 val currentValue = preferences[KEY_COUNT]
 ?: 0
 preferences[KEY_COUNT] = currentValue.
 inc()
 }
 }
}}

Here, KEY_COUNT represents the key used by the DataStore library to store the
number of requests. �e saveCount �eld will emit a new count value every time it
changes, and incrementCount will be increment the current saved number by 1.

3.	 Now, set up the AppDataStore dependency, just like how we handled the Retro�t
and Room dependencies. �e code is illustrated in the following snippet:

val Context.dataStore: DataStore<Preferences> by
preferencesDataStore(name = "my_preferences")

80 Deep Diving into Data Sources

class MyApplication : Application() {

 companion object {
 …
 lateinit var appDataStore: AppDataStore
 }

 override fun onCreate() {
 super.onCreate()
 …
 appDataStore = AppDataStore(dataStore)
 }
}

Here, we initialize the DataStore object and then inject it into the
AppDataStore class.

4.	 Next, modify the MainViewModel class, as follows:

class MainViewModel(
 private val userService: UserService,
 private val userDao: UserDao,
 private val appDataStore: AppDataStore
) : ViewModel() {
 var resultState by mutableStateOf(UiState())
 private set
 init {
 viewModelScope.launch {
 flow { emit(userService.getUsers()) }
 .onEach {
 val userEntities =
 it.map { user -> UserEntity
 (user.id, user.name, user.
 username, user.email) }
 userDao.insertUsers(userEntities)
 appDataStore.incrementCount()
 }.flatMapConcat { userDao.getUsers() }
 .catch { emitAll(userDao.getUsers()) }

Understanding and using the DataStore library 81

 .flatMapConcat { users ->
 appDataStore.savedCount.map {
 count -> UiState(users,
 count.toString()) }
 }
 .flowOn(Dispatchers.IO)
 .collect {
 resultState = it
 }
 }
 }
}

Here, we add a new dependency to AppDataStore, then we call
incrementCount from AppDataStore a�er the users from Retro�t are
inserted, and then we will insert savedCount from AppDataStore into the
existing �ow and create a new UiState object that contains a list of users and the
count, which will be collected in the resultState object.

5.	 �e UiState class will look something like this:

data class UiState(
 val userList: List<UserEntity> = listOf(),
 val count: String = ""
)

�is class will hold information from both of our persistent data sources.

6.	 Next, change MainViewModelFactory, as follows:

class MainViewModelFactory : ViewModelProvider.Factory {
 override fun <T : ViewModel> create(modelClass:
 Class<T>): T =
 MainViewModel(
 MyApplication.userService,
 MyApplication.userDao,
 MyApplication.appDataStore
) as T
}

82 Deep Diving into Data Sources

Here, we will inject a new dependency to AppDataStore into the
MainViewModel class.

7.	 Finally, modify the MainActivity class, as follows:

@Composable
fun UserList(uiState: UiState) {
 LazyColumn(modifier = Modifier.padding(16.dp)) {
 item(uiState.count) {
 Column(modifier = Modifier.padding(16.dp)) {
 Text(text = uiState.count)
 }
 }
 items(uiState.userList) {
 Column(modifier = Modifier.padding(16.dp)) {
 Text(text = it.name)
 Text(text = it.username)
 Text(text = it.email)
 }
 }
 }
}

Here, we replaced the list of UserEntity with the UiState dependency and
added a new row in a list of items that will indicate the count of requests.

If we run the application, we will see at the top the current count of requests made to
the server. If we kill and reopen the application, then we will see that count increase,
which shows how it will survive the application being stopped by the user or killed by the
operating system.

In this section, we have analyzed another common way of persisting data on an Android
device through the DataStore library. We also observed how easy it is for the DataStore
library to be integrated with �ows and other libraries such as Room and Retro�t.

Summary 83

Summary
In this chapter, we have looked at how we can load and persist data in Android
and the rules we must follow for threading. We �rst analyzed how we can load data
asynchronously and focused on coroutines and �ows, for which we have done simple
exercises for performing asynchronous operations on di�erent threads and updating
the UI on the main thread. We then studied how to load data from the internet using
OkHttp and Retro�t, and followed this up with how to persist data using Room and
DataStore and how we can integrate all of these with coroutines and �ows. We highlighted
the usage of these libraries in exercises, and we also showed how they can be integrated
with coroutines and �ows. �e integration of di�erent �ows of data was combined in
the ViewModel class, in which we loaded the network data and inserted it into the
local database. �is is generally not a good approach, and we will expand on how we can
improve this in future chapters.

In the next chapter, we will look at how we can present data to the user and the libraries
and frameworks we can use to achieve this.

3
Understanding Data

Presentation on
Android

In this chapter, we will study the libraries available for presenting data on the user
interface (UI). We will start this chapter by analyzing the lifecycles of activities and
fragments (what responsibilities they had in the past and what responsibilities they have
now) with the introduction of the ViewModel and Lifecycle libraries. We will then
move on to analyze aspects of how the UI works and look at how the Jetpack Compose
library revolutionized building UIs through its declarative approach. Finally, we will look
at how we can navigate between di�erent screens that are built in Compose by using the
Navigation library with the Compose extension.

86 Understanding Data Presentation on Android

In this chapter, we will cover the following main topics:

�	 Analyzing lifecycle-aware components

�	 Using Jetpack Compose to build UIs

By the end of the chapter, you will become familiar with how to present data on the UI
using ViewModel and Compose.

Technical requirements
Hardware and so�ware requirements are as follows:

�	 Android Studio Arctic Fox 2020.3.1 Patch 3

�e code �les for this chapter can be found here: https://github.com/
PacktPublishing/Clean-Android-Architecture/tree/main/Chapter3.

Check out the following video to see the Code in Action: https://bit.ly/3lmMIOg

Analyzing lifecycle-aware components
In this section, we will analyze the lifecycles of activities and fragments and the
potential issues that are caused when working with them. We will also observe how the
introduction of ViewModel and LiveData solves these problems.

When the Android operating system and its development framework were released,
activities were the most commonly used components when developing an application,
as they represent the entry point of the interaction between an application and a user.
As technology in displays and resolutions improved, apps could then present more
information and controls that the user could interact with. For developers, this meant
that the code required to manage the logic for a single activity increased, especially when
dealing with di�erent layouts for landscape and portrait. �e introduction of fragments
was meant to solve some of these problems. Responsibilities for handling the logic in
di�erent parts of the screen could now be divided into di�erent fragments.

�e introduction of fragments, however, didn’t solve all of the issues developers were
dealing with, mainly because both activities and fragments have their own lifecycles.
Dealing with lifecycles created the possibility of apps having context leaks, and the
combination of lifecycles and inheritance made both activities and fragments hard to
unit test.

Analyzing lifecycle-aware components 87

�e lifecycle of an activity is as follows:

Figure 3.1 � Activity lifecycle

 In Figure 3.1, we can see the six most well-known states of an activity:

�	 CREATED: �e activity enters this state when the onCreate method is called. �is
will be called when the system creates the activity.

�	 STARTED: �e activity enters this state when the onStart method is called. �is
will be called when the activity is visible to the user.

�	 RESUMED: �e activity enters this state when the onResume method is called.
�is will be called when the activity is in focus (the user can interact with it).

88 Understanding Data Presentation on Android

�e next three states are called when the activity is no longer in focus. �is can be caused
either by the user closing the activity, putting it in the background, or another component
gaining focus:

�	 PAUSED: �e activity enters this state when the onPause method is called. �is
will be called when the activity is visible but no longer in focus.

�	 STOPPED: �e activity enters this state when the onStop method is called. �is
will be called when the activity is no longer visible.

�	 DESTROYED: �e activity enters this state when the onDestroy method is called.
�is will be called when the activity is destroyed by the operating system.

When we use activities in our code, dealing with the lifecycle will look something like this:

class MyActivity : Activity() {

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 }

 override fun onStart() {
 super.onStart()
 }

 override fun onResume() {
 super.onResume()
 }

 override fun onPause() {
 super.onPause()
 }

 override fun onStop() {
 super.onStop()
 }

Analyzing lifecycle-aware components 89

 override fun onDestroy() {
 super.onDestroy()
 }
}

We can see here that we need to extend the Activity class and, if we want to execute a
particular operation in a particular state, we can override the method associated with the
state and invoke the super call. �is represents the main reason why activities are hard
to unit test. �e super calls would cause our test not only to invoke our code but also the
parent class’s code. Another reason activities are hard to test is because the system is the
one instantiating the class, which means that we cannot use the constructor of the class for
injection and must rely on setters to inject mock objects.

An important distinction should be made between the DESTROYED state and garbage
collection. A DESTROYED activity doesn’t mean it will be garbage collected. A simple
de�nition of what garbage collection means is that garbage collection is the process of
deallocating memory that is no longer used. Each created object takes a certain amount of
memory. When the garbage collector wants to free memory, it will look at objects that are
no longer referenced by other objects. If we want to make sure that objects will be garbage
collected, we will need to make sure that other objects that live longer than them will have
no reference to the objects we want to be collected. In Android, we want context (such
as activity and service) objects, or other objects with lifecycles, to be collected when their
onDestroy methods are called. �is is because they tend to occupy a lot of memory and
we will end up with crashes or bugs if we end up invoking methods a�er onDestroy is
called. Leaks that prevent context objects from being collected are called context leaks.
Let’s look at a simple example of this:

interface MyListener {

 fun onChange(newText: String)
}

object MyManager {

 private val listeners = mutableListOf<MyListener>()

90 Understanding Data Presentation on Android

 fun addListener(listener: MyListener) {
 listeners.add(listener)
 }

 fun performLogic() {
 listeners.forEach {
 it.onChange("newText")
 }
 }
}

Here, we have a MyManager class in which we collect a list of MyListener that will be
invoked when performLogic is called. Note that the MyManager class is de�ned using
the object keyword. �is will make the MyManager class static, which means the instance
of the class will live as long as the application process lives. If we want an activity to listen to
when the performLogic method is called, we will have something like the following:

class MyActivity : Activity(), MyListener {

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 MyManager.addListener(this)
 }

 override fun onChange(newText: String) {
 myTextView.setText(newText)
 }
}

Analyzing lifecycle-aware components 91

Here, MyListener is implemented in MyActivity, and when onChange is
called, myTextView will be updated. �e context leak occurs here when the activity
is destroyed. As MyActivity is a MyListener and a reference to it is kept in
MyManager, which lives longer, the garbage collector will not remove the MyActivity
instance from memory. If performLogic is called a�er MyActivity is destroyed,
we will get NullPointerException, because myTextView will be set to null; or, if
multiple instances of MyActivity leak, it could potentially lead to consuming the entire
application’s memory. A simple �x for this is to remove the reference to MyActivity
when it is destroyed:

object MyManager {
 …
 fun removeListener(listener: MyListener){
 listeners.remove(listener)
 }
 …
}
class MyActivity : Activity(), MyListener {
 …
 override fun onDestroy() {
 MyManager.removeListener(this)
 super.onDestroy()
 }
 …
}

Here, we add a simple method to remove MyListener from the list and invoke it from
the onDestroy method.

Working with fragments will lead to the same type of problems as activities. Fragments
have their own lifecycle and inherit from a parent Fragment class, which makes them
vulnerable to context leaks and hard to unit test.

92 Understanding Data Presentation on Android

�e lifecycle of a fragment is as follows:

Figure 3.2 � Fragment lifecycle

Analyzing lifecycle-aware components 93

In Figure 3.2, we can see that the fragment has similar lifecycle states to the activity. �e
onAttach and onDetach callbacks deal with when the fragment is attached to and
detached from the activity. onActivityCreated is called when the activity completes
its own onCreate call. �e onCreateView and onDestroyView callbacks deal
with in�ating and destroying a fragment’s views. One of the reasons these callbacks exist
is because of the fragment back stack. �is is a stack structure in which fragments are
kept so that when the users press the Back button, the current fragment is popped out
of the stack and the previous fragment is displayed. When fragments are replaced in the
back stack, they aren’t fully destroyed; just their views are destroyed to save memory.
When they are popped back to be viewed by the user, they will not be re-created, and
onCreateView will be called.

In order to solve the problems caused by dealing with activity and fragment lifecycles,
a set of libraries was created that are part of the androidx.lifecycle group. �e
Lifecycle class was introduced, which is responsible for keeping the current lifecycle
state and handling transitions between lifecycle events. �e events and states of the
Lifecycle class would be as follows:

Figure 3.3 � Lifecycle states

94 Understanding Data Presentation on Android

In Figure 3.3, we can see that the Lifecycle class only has four states (INITIALIZED,
CREATED, STARTED, and DESTROYED), and it will deal with six events (ON_CREATE,
ON_START, ON_RESUME, ON_PAUSE, ON_STOP, and ON_DESTROY). If we wish for
a certain class to be lifecycle-aware, it will need to implement the LifecycleOwner
interface. Activities and fragments already implement this interface. We can see
that for activities, the events match the existing callbacks, but for fragments, some
changes are required to match these new events. �e onAttach, onDetach, and
onActivityCreated methods are deprecated, so they shouldn’t be used with regard
to the new Lifecycle library. �e other change made for fragments is the introduction
of a viewLifecycleObserver instance variable, which is used to handle the lifecycle
between onCreateView and onDestroyView. �is observer should be used when
registering for lifecycle-aware components and you wish to update the UI.

In Android, when a con�guration change (device rotation and language change, for
example) occurs, then activities and fragments are re-created (the current instance is
destroyed and a new instance will be created). �is typically causes problems when
these con�guration changes occur while data is loaded or when we want to restore the
previously loaded data. �e ViewModel class is meant to solve this problem, along with
the issue of testability of activities and fragments. A ViewModel will live until the activity
or fragment it is connected to is destroyed and not re-created. �e ViewModel comes
with an onCleared method, which can be overwritten to clear any subscriptions to any
pending operations.

ViewModels are o�en paired with a class called LiveData. �is is a lifecycle-aware
component that observes and emits data. �e combination of the two classes eliminates
the risks of context leaks, as LiveData will only emit data when the observer is in a
STARTED or RESUMED state. An additional bene�t is that it will keep the last data
held; so, in the case of a con�guration change, the last data kept in LiveData will be
re-emitted. �is bene�t allows activities and fragments to observe the changes and restore
the UI to the way it was before they were re-created. In Jetpack Compose, LiveData isn’t
necessary due to Compose’s own set of state handling classes.

To use ViewModel and LiveData, you will need the following libraries to be added to
build.gradle:

implementation "androidx.lifecycle:lifecycle-viewmodel-
ktx:2.4.0"
implementation "androidx.lifecycle:lifecycle-livedata-
ktx:2.4.0"

Analyzing lifecycle-aware components 95

For integration with Jetpack Compose we will need the following:

implementation "androidx.lifecycle:lifecycle-viewmodel-
compose:2.4.0"
implementation "androidx.compose.runtime:runtime-livedata:2.4.0
"

An example of a ViewModel and LiveData implementation will look something like
this:

class MyViewModel : ViewModel() {

 private val _myLiveData = MutableLiveData("")
 val myLiveData: LiveData<String> = _myLiveData

 init {
 _myLiveData.value = "My new value"
 }
}

In the preceding example, we extend the ViewModel class and de�ne two LiveData
instance variables. �e _myLiveData variable is de�ned as MutableLiveData and
is set to private. �is is to prevent other objects from changing the values of LiveData.
�e myLiveData variable is public and can be used by Lifecycle owners to observe
changes on LiveData.

To obtain the instance of a ViewModel in an activity or fragment, we can use the
following:

class MainActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 …
 val myViewModel : MyViewModel by viewModels()
 …
 }
}

96 Understanding Data Presentation on Android

Here, the viewModels method will retrieve the instance of MyViewModel. �e method
provides the ability to pass along a ViewModelProvider.Factory object. �is is
useful in situations where we want to inject various objects in our ViewModel. �is will
look something like this:

 val myViewModel : MyViewModel by viewModels {
 object : ViewModelProvider.Factory {
 override fun <T : ViewModel>
 create(modelClass: Class<T>): T {
 return MyViewModel() as T
 }
 }
 }

If we want to observe the changes on LiveData, we would need to do something like
this:

class MainActivity : ComponentActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 …
 super.onCreate(savedInstanceState)
 val myViewModel: MyViewModel by viewModels()
 myViewModel.myLiveData.observe(this) { text ->
 myTextView.text = text
 }
 …
 }
}

In the preceding example, we invoke the observe method, where we pass the activity
as LifecycleOwner and pass a Lambda as Observer, which will be invoked when
LiveData changes its value.

If we want to use ViewModel with LiveData in Jetpack Compose, we must do the
following:

@Composable
fun MyScreen(viewModel: MyViewModel = viewModel()) {
 viewModel.myLiveData.observeAsState().value?.let {
 MyComposable(it)

98 Understanding Data Presentation on Android

Follow these steps to complete the exercise:

1.	 Add the LiveData extension library for Jetpack Compose to app/build.
gradle:

 implementation "androidx.compose.runtime:runtime-
livedata:$compose_version"

2.	 Add the "Total request count" text in strings.xml:

 <string name="total_request_count">Total request
count: %d</string>

3.	 Create the MainTextFormatter class as follows:

class MainTextFormatter(private val
 applicationContext: Context) {

 fun getCounterText(count: Int) =
 applicationContext.getString(R.string.total_
request_co
 unt, count)
}

�e reason we created this class is to prevent possible context leaks by having a
Context object inside the MainViewModel class. Here, we have a method that
will take a count as a parameter and return the required text.

4.	 Inject MainTextFormatter in MainViewModel and use the formatted text as a
value for the UiState.count object:

class MainViewModel(
 …
 private val mainTextFormatter: MainTextFormatter
) : ViewModel() {
 …
 init {
 viewModelScope.launch {
 …
 .flatMapConcat { users ->
 appDataStore.savedCount.map {
 count ->

Analyzing lifecycle-aware components 99

 UiState(
 users,
 mainTextFormatter.
getCounterText(count)
)
 }
 }
 …
 }
 }
}

5.	 Next, create the instance of the MainTextFormatter class in the
MyApplication class:

class MyApplication : Application() {

 companion object {
 …
 lateinit var mainTextFormatter:
 MainTextFormatter
 }

 override fun onCreate() {
 super.onCreate()
 …
 mainTextFormatter = MainTextFormatter(this)
 }
}

6.	 Now, update MainViewModelFactory to use MainTextFormatter, which
was just created, and pass it into MainViewModel:

class MainViewModelFactory : ViewModelProvider.Factory {
 override fun <T : ViewModel> create(modelClass:
 Class<T>): T =
 MainViewModel(
 MyApplication.userService,
 MyApplication.userDao,

100 Understanding Data Presentation on Android

 MyApplication.appDataStore,
 MyApplication.mainTextFormatter
) as T
}

7.	 Next, add LiveData to MainViewModel:

class MainViewModel(
 …
) : ViewModel() {

 private val _uiStateLiveData =
 MutableLiveData(UiState())
 val uiStateLiveData: LiveData<UiState> =
 _uiStateLiveData

 init {
 viewModelScope.launch {
 …
 .collect {
 _uiStateLiveData.value = it
 }
 }
 }
}

Here, we have de�ned the two LiveData variables, one to update the value and
the other to be observed, and in the collect method, we update the value of
LiveData.

8.	 In MainActivity, update the @Composable functions to use LiveData:

…
@Composable
fun Screen(viewModel: MainViewModel = viewModel(factory =
MainViewModelFactory())) {
 viewModel.uiStateLiveData.observeAsState().value?.let
{

Analyzing lifecycle-aware components 101

 UserList(uiState = it)
 }
}
…

Here, we call the observeAsState extension method on LiveData from
MainViewModel, and then call the UserList method, which will redraw the UI
for each new value.

Figure 3.4 � Output of Exercise 3.1

If we run the application, we will see the same list of users, and at the top, we will see
"Total request count: x" instead of just the x character that was there before, as
shown in Figure 3.4. In this exercise, we used Jetpack Compose for rendering the UI. In
the section that follows, we will analyze how Android handles UIs and go more in-depth
into the Jetpack Compose framework.

102 Understanding Data Presentation on Android

Using Jetpack Compose to build UIs
In this section, we will analyze how to build UIs for Android applications using the View
hierarchy and look at the implications this has for applications. We will then look at how
Jetpack Compose simpli�es and changes how UIs are built and how we can use Compose
to create UIs. We will be looking at Jetpack Compose with the view of how we can
integrate it with other libraries and how to build a simple UI. For more information on
how to build more complex UIs, you can refer to the o�cial documentation found here:
https://developer.android.com/jetpack/compose.

�e way Android deals with UIs is through the View hierarchy. �e subclasses of View
deal with speci�c UI components that the user can interact with. �e hierarchy looks
similar to the following diagram:

Figure 3.5 � View hierarchy

�e TextView class deals with displaying text on the screen, EditText deals with
handling text inputted by the user, and Button deals with rendering buttons on the
screen. A specialized subclass of View is the ViewGroup class. �is represents the
base class for various layout classes that are responsible for how the views are grouped
and arranged on the screen. Here, we �nd classes such as LinearLayout (which
groups views one a�er the other either vertically or horizontally), RelativeLayout
(which groups the views relative to the parent or to each other), or more recently,
ConstraintLayout, which o�ers various ways to position views however we desire
without creating many nested layouts (because it was bad for performance), which is
why it became commonly used. When it comes to dealing with displaying lists of items
of unknown lengths, objects such as ListView and RecyclerView are used. Both
require creating adapters that will be responsible for pairing an object from a list with an
associated View to render a row in the list in the UI.

Using Jetpack Compose to build UIs 103

Using ListViews is prone to ine�ciencies caused when scrolling where views are
recreated for each new row, so in a long list of items, a lot of views would be created and
then garbage collected. To solve this, developers had to implement a pattern called a
ViewHolder, which is responsible for keeping references to the views created for each row
and re-using them for new rows when the user scrolls away. RecyclerView addresses
this issue so the adapter RecyclerView uses requires ViewHolder. �is means that if
a user views a list of 100 items and 10 are visible on the screen, for the 10 that are visible
on the screen there would be 10 views to represent each row. When the user scrolls down,
the 10 views that were created at the beginning would then display the items for the
currently visible items. Developers can also create custom views by extending any of the
existing View classes. �is is useful when certain UI components have to be re-used in
di�erent activities, fragments, or other custom views.

To display these views to the user, we would need to use activities and fragments.
For activities, this would require invoking the setContentView method in the
onCreate method, and in fragments, we would need to return a View object in the
onCreateView method. We have the possibility of creating the entire layout for an
activity or fragment in Java or Kotlin, but this would lead to a lot of code being written.
�is, and the fact that we can have di�erent layouts for di�erent screen sizes or device
rotation, led to using the res/layout folder, in which we can specify how a layout
might look. An example of how this might look is as follows:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:id="@+id/text_view"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />
</androidx.constraintlayout.widget.ConstraintLayout>

104 Understanding Data Presentation on Android

In the preceding example, we de�ne ConstraintLayout, which contains only
TextView that displays a "Hello World" text. To obtain a reference to TextView to
allow us to change the text because of an action or data being loaded, we would need to
use the findViewById method from either the Activity class or the View class. �is
would look something like the following:

class MainActivity : ComponentActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 val textView =
 findViewById<TextView>(R.id.text_view)
 textView.text = "Hello new world"
 }
}

�is approach would lead to possible crashes within an application. Developers
would need to make sure that when a layout was set for Activity or Fragment
and findViewById was used, then the view was added to the layout �le. With
the introduction of Kotlin, this was initially addressed through the Kotlin Synthetics
framework, which generated extensions for the declared views in a layout. Kotlin
Synthetics would generate an extension for a View’s android:id XML tag, which
would be accessible in the code. Later, this was replaced with ViewBinding. When
ViewBinding is used in a project, a class is generated for each layout that will
hold references to all the views in the layout, eliminating potential crashes related to
findViewById. All these approaches with regard to creating your UI are de�ned as
imperative because we need to specify the views that our interface uses and control how
we update the views when data is changed.

An alternative approach to this is the declarative way of creating the UI. �is concept allows
us to describe what we want to show on the UI and the framework by using the appropriate
views based on the description we provide. �e notions of state are introduced here,
where the UIs are redrawn when states change, rather than updating the existing views. In
Android, we can use Jetpack Compose to create UIs in a declarative way. We no longer have
to deal with the View hierarchy and instead use @Composable functions, in which we
specify what we want to display on the screen without thinking of how we need to display
it, and we can also create the UI using Kotlin using less code than we would normally. In
Compose, the Hello World example would look something like the following code:

class MainActivity : ComponentActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {

Using Jetpack Compose to build UIs 105

 super.onCreate(savedInstanceState)
 setContent {
 Surface {
 HelloWorld()
 }
 }
 }
}

@Composable
fun HelloWorld() {
 Text(text = "Hello World")
}

If we want to update the text because of a change in data, we will need to use State
objects from the Compose library. Compose will observe these states and, when the
values are changed, Compose will redraw the UI associated with that state. An example of
this is as follows:

@Composable
fun HelloWorld() {
 val text = remember { mutableStateOf("Hello World") }
 ShowText(text = text.value) {
 text.value = text.value + "0"
 }
}

@Composable
fun ShowText(text: String, onClick: () -> Unit) {
 ClickableText(
 text = AnnotatedString(text = text),
 onClick = {
 onClick()
 })
}

106 Understanding Data Presentation on Android

In this example, when the text is clicked, the 0 character is appended to the text and the
UI is updated. �is is because of the use of mutableStateOf. �e remember method
is needed because this state is kept inside a @Composable function, and it is used to
keep the state intact while recomposition happens (the UI is redrawn). To make the text
clickable, we needed to change from Text to ClickableText. �e reason we are using
two @Composable functions is that we want to keep the @Composable functions
as re-usable as possible. �is is called state hoisting, where we separate the stateful
(HelloWorld) components from the stateless components (ShowText).

When it comes to rendering lists of items, Compose o�ers a simple way of rendering
them in the form of Column (for when the length of the list is known and short), and
LazyColumn (when the list of items is unknown and could potentially be long). An
example of this is from Exercise 3.1:

LazyColumn(modifier = Modifier.padding(16.dp)) {
 item(uiState.count) {
 Column(modifier = Modifier.padding(16.dp)) {
 Text(text = uiState.count)
 }
 }
 items(uiState.userList) {
 Column(modifier = Modifier.padding(16.dp)) {
 Text(text = it.name)
 Text(text = it.username)
 Text(text = it.email)
 }
 }
 }

Here, we display a header at the top of the item list, and we use another column to set the
padding for the row; then, we display the entire list of items with the use of the items
function, and for each row, we set the padding and display a group with three texts.

If we want to display input �elds and buttons, then we can look at how we implemented
the UI in Exercise 2.1, from Chapter 2, Deep Diving into Data Sources:

@Composable
fun Calculator(
 a: String, onAChanged: (String) -> Unit,
 b: String, onBChanged: (String) -> Unit,
 result: String,

Using Jetpack Compose to build UIs 107

 onButtonClick: () -> Unit
) {
 Column(modifier = Modifier.padding(16.dp)) {
 OutlinedTextField(
 value = a,
 onValueChange = onAChanged,
 keyboardOptions = KeyboardOptions(keyboardType
 = KeyboardType.Number),
 label = { Text("a") }
)
 OutlinedTextField(
 value = b,
 onValueChange = onBChanged,
 keyboardOptions = KeyboardOptions(keyboardType
 = KeyboardType.Number),
 label = { Text("b") }
)
 Text(text = result)
 Button(onClick = onButtonClick) {
 Text(text = "Calculate")
 }
 }
}

Here, we used OutlinedTextField to render the equivalent of TextInputLayout.
We could have used TextField if we wanted the equivalent of a simple EditText. For
displaying a button, we can use the Button method, which uses Text for rendering the
text on the button.

Compose also has integrations with other libraries, such as ViewModel and LiveData:

@Composable
fun Screen(viewModel: MainViewModel = viewModel(factory =
MainViewModelFactory())) {
 viewModel.uiStateLiveData.observeAsState().value?.let {
 UserList(uiState = it)
 }
}

108 Understanding Data Presentation on Android

Here, we can pass ViewModel as a parameter in our Composable function and use the
observeAsState function to convert LiveData into a State object, which will then
be observed by Compose to redraw the UI. Compose also supports integration with the
Hilt library. When Hilt is added to a project, then there is no need to specify Factory
for the ViewModel.

Another important feature of Compose is how it deals with navigation between di�erent
screens. �e Compose navigation is built upon the androidx.navigation library.
�is allows Compose to use the NavHost and NavController components to navigate
between di�erent screens. �e screens are built using Compose, which means that an
application using only Compose would ideally have only one activity. �is eliminates any
potential problems regarding activity and fragment lifecycles. To introduce navigation
into a project, the following library is required:

dependencies {
 …
 implementation "androidx.navigation:navigation-
compose:2.4.0-rc01"
 …
}

If we want to navigate from one screen to another, we will need to obtain
NavHostController and pass it into a @Composable method that will represent the
structure of the application:

Surface {
 val navController = rememberNavController()
 AppNavigation(navController = navController)
}

�e AppNavigation @Composable method will look something like this:

@Composable
fun AppNavigation(navController: NavHostController) {
 NavHost(navController, startDestination = "screen1") {
 composable(route = "screen1") {
 Screen1(navController)
 }
 composable(
 route = "screen2/{param}",

Using Jetpack Compose to build UIs 109

 arguments = listOf(navArgument("param") { type
 = NavType.StringType })
) {
 Screen2(navController,
 it.arguments?.getString("param").orEmpty())
 }
 }
}

In AppNavigation, we invoke the NavHost @Composable function in which we
will place the screens of the application along with a route to each of them. In this case,
Screen1 will have a simple route to navigate to and Screen2 will require an argument
when it is navigated to indicated through the {param} notation. For arguments, we will
need to specify the type of the argument. In this case, it will be String, and NavType.
StringType indicates this. If we wish to pass more complex arguments, then we will
need to supply our own custom types and indicate how they should be serialized and
deserialized. When we want to navigate from Screen1 to Screen2, then we will need to
do the following:

@Composable
fun Screen1(navController: NavController) {
 Column(modifier = Modifier.clickable {
 navController.navigate("screen2/test")
 }) {
 Text(text = "My text")
 }
}

When Column is clicked in Screen1, it will invoke NavController to navigate to
Screen2 and pass the test argument. Screen2 will look like the following:

@Composable
fun Screen2(navController: NavController, text: String) {
 Column {
 Text(text = text)
 }
}

Screen2 will use the text extracted from it.arguments?.getString("param").
orEmpty() and it will display it on the UI.

Using Jetpack Compose to build UIs 111

2.	 Create the AppNavigation class, which will hold the information for the routes
and arguments for each of our screens:

private const val ROUTE_USERS = "users"
private const val ROUTE_USER = "users/%s"
private const val ARG_USER_NAME = "name"

sealed class AppNavigation(val route: String, val
 argumentName: String = "") {

 object Users : AppNavigation(ROUTE_USERS)

 object User : AppNavigation
 (String.format(ROUTE_USER, "{$ARG_USER_NAME}")
 , ARG_USER_NAME) {

 fun routeForName(name: String) =
 String.format(ROUTE_USER, name)
 }
}

As the navigation relies on URLs to identify the di�erent screens, we can take
advantage of sealed classes and objects in Kotlin to keep track of the required inputs
for each screen.

3.	 Rename the screen @Composable function to Users in MainActivity and add
NavController as a parameter:

@Composable
fun Users(
 navController: NavController,
 viewModel: MainViewModel = viewModel(factory =
 MainViewModelFactory())
) {
 viewModel.uiStateLiveData.observeAsState().value?.let
{
 UserList(uiState = it, navController)
 }
}

112 Understanding Data Presentation on Android

4.	 Next, pass the NavController parameter to UserList and implement the click
listener for the user row:

@Composable
fun UserList(uiState: UiState, navController:
NavController) {
 LazyColumn(modifier = Modifier.padding(16.dp)) {
 item(uiState.count) {
 Column(modifier = Modifier.padding(16.dp)) {
 Text(text = uiState.count)
 }
 }
 items(uiState.userList) {
 Column(modifier = Modifier
 .padding(16.dp)
 .clickable {
 navController.navigate
 (AppNavigation.User.routeForName
 (it.name))
 }) {
 Text(text = it.name)
 Text(text = it.username)
 Text(text = it.email)
 }
 }
 }
}

5.	 Create the User @Composable function in MainActivity:

@Composable
fun User(text: String) {
 Column {
 Text(text = text)
 }
}

Using Jetpack Compose to build UIs 113

6.	 Now, create an App @Composable function that will use NavHost to set up the
navigation between the two screens in MainActivity:

@Composable
fun App(navController: NavHostController) {
 NavHost(navController, startDestination =
 AppNavigation.Users.route) {
 composable(route = AppNavigation.Users.route) {
 Users(navController)
 }
 composable(
 route = AppNavigation.User.route,
 arguments = listOf(navArgument
 (AppNavigation.User.argumentName) {
 type = NavType.StringType
 })
) {
 User(it.arguments?.getString(AppNavigation.
User.argumentName).orEmpty())
 }
 }
}

7.	 Finally, invoke the App function when the Activity content is set in
MainActivity:

class MainActivity : ComponentActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 Exercise0302Theme {
 // Replace this with your application's theme
 Surface {
 val navController =
 rememberNavController()
 App(navController = navController)
 }
 }

114 Understanding Data Presentation on Android

 }
 }
}

Figure 3.6 � Output of Exercise 3.2

If we run the application, we should see the same list of users as before, and if we click on
a user, it will transition to a new screen that will display the selected user’s name, as shown
in Figure 3.6. If we press the Back button, we should see the initial list of users; that’s
because, by default, the navigation library handles back navigation.

In this exercise, we have analyzed how we can use Jetpack Compose to navigate between
two screens in an application. In future chapters, we will revisit navigation when we must
navigate between di�erent screens in di�erent modules.

Summary 115

Summary
In this chapter, we have analyzed how data can be presented in Android and discussed the
libraries we have available now. We have looked at Android lifecycles and the potential
issues that applications could have regarding lifecycles and then looked at how libraries
such as ViewModel and LiveData solve most of these problems. We then looked at
how the UI works in Android and how we would need to deal with using XML to de�ne
layouts in which we would insert the views that the layouts needed to display, and how
we would need to update the state of the views when the data changes. We then looked at
how Jetpack Compose solves these issues in a declarative functional way. We built upon
the exercises in the previous chapter to show how we can integrate multiple libraries in a
single application and display data from the internet.

In the next chapter, we will deal with managing the dependencies inside an application
and the libraries available for doing so.

4
Managing

Dependencies in
Android Applications
In this chapter, we will analyze the concept of dependency injection (DI) and the bene�ts
it provides and look at how this was done in the past in Android applications either
through manual injection or using Dagger 2. We will go over some of the libraries used in
Android applications, stopping and looking in more detail at the Hilt library and how it
simpli�es DI for an Android application.

In this chapter, we will cover the following topics:

�	 Introduction to DI

�	 Using Dagger 2 to manage dependencies

�	 Using Hilt to manage dependencies

By the end of this chapter, you will be familiar with the DI pattern and libraries such as
Dagger and Hilt, which can be used to manage dependencies in Android applications.

118 Managing Dependencies in Android Applications

Technical requirements
�e hardware and so�ware requirements are as follows:

�	 Android Studio Arctic Fox 2020.3.1 Patch 3

�e code �les for this chapter can be found here: https://github.com/
PacktPublishing/Clean-Android-Architecture/tree/main/Chapter4.

Check out the following video to see the Code in Action: https://bit.ly/38yFDHz

Introduction to DI
In this section, we will look at what DI is, the bene�ts it provides, and how this concept is
applied to an Android application. We will then look at some DI libraries and how they
work.

When a class depends on functionality from another class, a dependency is created
between the two classes. To invoke the functionality on the class you depend on, you will
need to instantiate it, as in the following example:

 class ClassA() {

 private val b: ClassB = ClassB()

 fun executeA() {
 b.executeB()
 }
}

class ClassB() {

 fun executeB() {

 }
}

Introduction to DI 119

In this example, ClassA creates a new instance of ClassB, and then when executeA
is invoked, it will invoke executeB. �is poses a problem because ClassA will have
the extra responsibility of creating ClassB. Let’s see what happens if ClassB needs to
change to something such as the following:

class ClassB(private val myFlag: Boolean) {

 fun executeB() {
 if (myFlag) {
 // Do something
 } else {
 // Do something else
 }
 }
}

Here, we added the myFlag variable to ClassB, which is used in the executeB
method. �is change would cause a compile error because now ClassA will need to be
modi�ed to make the code compile.

class ClassA() {

 private val b: ClassB = ClassB(true)

 fun executeA() {
 b.executeB()
 }
}

Here, we will need to supply a Boolean value when we create ClassB.

Making these types of changes to an application as its code base increases will make it
hard to maintain. A solution to this problem is to separate how we use dependencies and
how we create them and delegate the creation to a di�erent object. Continuing from the
preceding example, we can rewrite ClassA as the following:

class ClassA(private val b: ClassB) {

 fun executeA() {

120 Managing Dependencies in Android Applications

 b.executeB()
 }
}

Here, we removed the instantiation of ClassB and moved the variable in the constructor
of ClassA. Now, we can create a class that will be responsible for creating the instances of
both classes that looks like the following:

class Injector() {

 fun createA(b: ClassB) = ClassA(b)

 fun createB() = ClassB(true)

}

Here, we have a new class that will create an instance of ClassA with ClassB as a
parameter and a separate method for creating an instance of ClassB. Ideally, when the
program is initialized, we would need to initialize all the dependencies and pass them
appropriately:

fun main(args : Array<String>) {
 val injector = Injector()
 val b = injector.createB()
 val a = injector.createA(b)
}

Here, we created Injector, which is responsible for creating our instances, and then
invoked the appropriate methods on Injector to retrieve the appropriate instances of
each class. What we have done here is called DI. Instead of ClassA creating the instance
of ClassB, it will have an instance of ClassB injected through the constructor, also
known as constructor injection.

In ClassB, we have an if-else statement in the executeB method. We can
introduce an abstraction there, so we split the if-else statement into two separate
implementations:

class ClassA(private val b: ClassB) {

 fun executeA() {
 b.executeB()

Introduction to DI 121

 }
}

interface ClassB {

 fun executeB()
}

class ClassB1() : ClassB {

 override fun executeB() {
 // Do something
 }
}

class ClassB2() : ClassB {

 override fun executeB() {
 // Do something else
 }
}

Here, ClassA remains the same and ClassB has become an interface with two
implementations, called ClassB1 and ClassB2, representing the implementations of
the if-else branch. Here, we can use the Injector class as well to inject one of the
two implementations without requiring any change on ClassA:

class Injector() {

 fun createA(b: ClassB) = ClassA(b)

 fun createB() = ClassB1()

}

122 Managing Dependencies in Android Applications

In the createB method, we return an instance of ClassB1, which will then be later
injected into ClassA. �is represents another bene�t of DI, where we can make our code
depend on abstractions rather than concretions and provide di�erent concretions for
di�erent purposes. Based on this, we can de�ne the following roles when it comes to DI:

�	 Service: Represents the object that contains useful functionality (ClassB1 and
ClassB2 in our example)

�	 Interface: Represents the service abstraction (ClassB in our example)

�	 Client: Represents the object that depends on the service (ClassA in our example)

�	 Injector: Represents the object responsible for constructing the services and
injecting them into the client (Injector in our example)

Figure 4.1 � DI class diagram

�e preceding �gure shows the class diagram of our example and the DI pattern. We
can observe how the Injector class is responsible for creating and injecting the
dependencies, ClassA is the client receiving a dependency to ClassB, which is the
interface, and ClassB1 and ClassB2 represent the services.

�ere are multiple classi�cations of the types of DI, and they mainly revolve around two
ways of injecting dependencies:

�	 Constructor injection: Where dependencies are passed through the constructor.

Using Dagger 2 to manage dependencies 123

�	 Field injection: Where dependencies are passed through setter methods or by
changing the instance variables. �is can also be referred to as setter injection
and it can also be expanded to interface injection in which the setter method is
abstracted to an interface.

Another bene�t of DI is the fact that it makes the code more testable. When dependencies
are injected into an object, it makes the class easier to test, because in the test code, we can
inject objects that allow us to mimic various behaviors, called mocks.

In this section, we have introduced the DI pattern, how it works, and the problems it is
solving. Developers can manage an application’s dependencies and injection manually, by
setting up injectors. But as an application grows, it becomes hard to maintain, especially
when we want certain objects to live only as long as other objects and not as long as
the application, or handle di�erent instances of the same class. �ere are various DI
frameworks and libraries that can manage all these cases and in Android, one of the most
commonly used ones is Dagger 2.

Using Dagger 2 to manage dependencies
In this section, we will analyze the Dagger 2 library, how it handles DI, how it works, how
it is integrated into an Android application, and what issues it might create.

�e Dagger 2 library relies on code generation based on annotation processing, which will
generate the boilerplate code that is required to perform DI. �e library is written in Java,
and it is used for various projects outside of Android applications. Because it is written in
Java, it provides compatibility for apps written in Java, Kotlin, or both. �e library is built
using Java Speci�cation Requests (JSR) 330, which provide a set of useful annotations
for DI (@Inject, @Named, @Qualifier, @Scope, and @Singleton).

When integrating Dagger 2, there are three main concepts that we will need to consider:

�	 Provider: �is is represented by the classes responsible for providing the
dependencies, using the @Module annotation for the classes and @Provides
for the methods. To avoid many @Module de�nitions, we can use the @Inject
annotation on a constructor, which will provide the object as a dependency.

�	 Consumer: �is is represented by the classes where the dependencies are required
using the @Inject annotation.

�	 Connector: �is is represented by the classes that connect the providers with the
consumers and is annotated with the @Component annotation.

124 Managing Dependencies in Android Applications

In order to add Dagger 2 to an Android application, you will �rst need to add the Kotlin
annotation processor plugin to the build.gradle �le of the module in which Dagger 2
is used:

plugins {
 …
 id 'kotlin-kapt'
 …
}

Here, we added the kotlin-kapt plugin to allow Dagger 2 to generate the code
necessary for DI. Next, we will need the Dagger 2 dependencies:

dependencies {
 …
 implementation 'com.google.dagger:dagger:2.40.5'
 kapt 'com.google.dagger:dagger-compiler:2.40.5'
 …
}

Here, we are adding a dependency to the Dagger 2 library and a dependency to the
annotation processing library, which has the role of code generation. �e library version
should ideally be the latest stable one available in the library repository.

Let’s now re-introduce the example from the previous section:

class ClassA(private val b: ClassB) {

 fun executeA() {
 b.executeB()
 }
}

interface ClassB {

 fun executeB()
}

class ClassB1() : ClassB {

Using Dagger 2 to manage dependencies 125

 override fun executeB() {
 // Do something
 }
}

class ClassB2() : ClassB {

 override fun executeB() {
 // Do something else
 }
}

Here, we have the same classes with the same dependencies. Instead of de�ning an
Injector class, we can use Dagger 2 to de�ne an @Module:

@Module
class ApplicationModule {

 @Provides
 fun provideClassA(b: ClassB): ClassA = ClassA(b)

 @Provides
 fun provideClassB(): ClassB = ClassB1()
}

Here, we annotated the class with @Module and for each instance, we used the
@Provides annotation. We can further simplify this with the @Inject annotation and
delete the @Provides methods from ApplicationModule:

class ClassA @Inject constructor(private val b: ClassB) {
 …
}

class ClassB1 @Inject constructor() : ClassB {
 …
}

class ClassB2 @Inject constructor() : ClassB {

126 Managing Dependencies in Android Applications

 …
}

In the preceding code, we have added @Inject for each constructor. In the case
of ClassA, it will have both the role of injecting ClassB and providing ClassA
to other objects as a dependency. �ere is, however, an issue because ClassA has a
dependency on the abstraction rather than the concretion, so Dagger will not know
which instance to provide to ClassA. We can now add an @Binds annotated method to
ApplicationModule, which will connect the abstraction with the implementation:

@Module
abstract class ApplicationModule {

 @Binds
 abstract fun bindClassB(b: ClassB1): ClassB

}

Here, we added the bindClassB abstract method, which is annotated with @Binds.
�is method will tell Dagger 2 to connect the ClassB1 implementation with the ClassB
abstraction. To avoid large @Provides annotations, we should try to use the annotation
for dependencies where we cannot modify the code and instead rely on @Inject on the
constructors and using @Binds where possible.

Now, we will need to create the connector:

@Singleton
@Component(modules = [ApplicationModule::class])
interface ApplicationComponent

Here, we are de�ning an @Component in which we specify the module the application will
use. �e @Singleton annotation tells Dagger that all the dependencies in this component
will live as long as the application. At this point, we should trigger a build on the application.
�is will trigger the compilation, which will generate a DaggerApplicationComponent
class. �is is an implementation of ApplicationComponent that Dagger 2 will handle.
�is class will be used to create the entire dependency graph. In Android, we need an entry
point for this, which is represented by the Application class:

class MyApplication : Application() {

 lateinit var component: ApplicationComponent

Using Dagger 2 to manage dependencies 127

 override fun onCreate() {
 super.onCreate()
 component = DaggerApplicationComponent.create()
 }
}

Here, in the MyApplication class, we are using DaggerApplicationComponent
and creating the dependency graph. �is will go over all the modules in the graph and
invoke all the @Provides methods. �e @Component annotation has another role,
which is to de�ne member injection when constructor injection is not possible. In
Android, this situation occurs when dealing with life cycle components such as activities
and fragments, because we are not allowed to modify the default constructors of these
classes. To do this, we can do the following:

@Singleton
@Component(modules = [ApplicationModule::class])
interface ApplicationComponent {

 fun inject(mainActivity: MainActivity)
}

In ApplicationComponent, we add a method called inject and the Activity
where we want the injection to be performed. In the MainActivity class, we will need
to do the following:

class MainActivity : AppCompatActivity() {

 @Inject
 lateinit var a: ClassA

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 (application as
 MyApplication).component.inject(this)
 a.executeA()
 }
}

128 Managing Dependencies in Android Applications

Here, we will need to access the ApplicationComponent instance created in
MyApplication and then invoke the inject method from ApplicationCom-
ponent. �is will then initialize variable a with the instance Dagger 2 created. �is
approach has a problem, however, because all the dependencies will live as long as
the application. �is means that Dagger 2 will need to keep dependencies in memory
when they are not required. Dagger 2 o�ers a solution for this in the form of scopes and
subcomponents. We can create a new Scope, which will tell Dagger 2 to only keep certain
dependencies as long as an Activity is alive, and then apply this Scope to a Subcomponent,
which will handle a smaller graph of dependencies.

@Scope
@MustBeDocumented
@kotlin.annotation.Retention(AnnotationRetention.RUNTIME)
annotation class ActivityScope

Here, we created a new @Scope annotation, which will indicate that dependencies
will live as long as activities. We will next use @ActivityScope to create an @
Subcomponent annotated class:

@ActivityScope
@Subcomponent(modules = [ApplicationModule::class])
interface MainSubcomponent {

 fun inject(mainActivity: MainActivity)

}

Here, we have de�ned a subcomponent that will use ApplicationModule and has an
inject method for �eld injection into MainActivity. A�er that, we will need to tell
Dagger 2 to create MainSubcomponent, by modifying ApplicationComponent:

@Singleton
@Component
interface ApplicationComponent {

 fun createMainSubcomponent(): MainSubcomponent
}

Using Dagger 2 to manage dependencies 129

Here, we have removed ApplicationModule from @Component and replaced the
inject method with a createMainSubcomponent method, which will allow Dagger
to create MainSubcomponent. Finally, we will need to access MainSubcomponent in
MainActivity and inject the ClassA dependency:

class MainActivity : AppCompatActivity() {

 @Inject
 lateinit var a: ClassA

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 (application as MyApplication).component.
 createMainSubcomponent().inject(this)
 a.executeA()
 }
}

Here, we access the ApplicationComponent instance from MyApplication,
then create MainSubcomponent and then inject the ClassA dependency into the
a variable. �e code generated by Dagger 2 can be seen in the {module}/build/
generated/source/kapt/{build type} folder and will look something similar
to the following �gure:

Figure 4.2 � Generated Dagger Classes

348 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Android UI Development with Jetpack Compose.

�omas Künneth

ISBN: 978-1-80181-216-0

�	 Gain a solid understanding of the core concepts of Jetpack Compose

�	 Develop beautiful, neat, and immersive UI elements that are user friendly, reliable,
and performant

�	 Build a complete app using Jetpack Compose

�	 Add Jetpack Compose to your existing Android applications

�	 Test and debug apps that use Jetpack Compose

	Clean Android Architecture
	Title
	Copyright
	Contributors

