
Clean Android
Architecture
Take a layered approach to writing clean, testable,
and decoupled Android applications

Alexandru Dumbravan

Clean Android
Architecture

Take a layered approach to writing clean, testable,
and decoupled Android applications

Alexandru Dumbravan

BIRMINGHAM—MUMBAI

Clean Android Architecture
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Rohit Rajkumar
Publishing Product Manager: Nitin Nainani
Senior Editor: Aamir Ahmed
Content Development Editor: Feza Shaikh
Technical Editor: Simran Udasi
Copy Editor: Safis Editing
Project Coordinator: Manthan Patel
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Shyam Sundar Korumilli
Marketing Coordinator: Teny Thomas

First published: June 2022

Production reference: 1200522

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80323-458-8

www.packt.com

This book is dedicated to all the developers who went the extra mile to
learn, practice, hack, innovate, and then pass their knowledge on to

others. This propelled our development world forward and made this book
a possibility. This book is also dedicated to all the people in my life who
supported me through the times I was staring desperately at a computer

screen filled with compile errors.

Alexandru Dumbravan

Contributors

About the author
Alexandru Dumbravan has been an Android developer since 2011 and has worked across
a variety of Android applications that have contained features such as messaging, voice
calls, file management, and file management. He continues to broaden his development
skills while working in London for a popular fintech company.

About the reviewers
Revathi Gopalakrishnan is a software professional with 20 years of experience in the
IT industry. She has worked extensively in mobile application development and has led
various enterprise mobile enablement initiatives for large organizations and consumer
applications for customers around the globe. She is also interested in emerging areas,
such as machine learning, IoT, and robotic process automation. She has authored
a book with Packt titled Mobile Machine Learning. Revathi resides in Chennai and enjoys
spending her weekends with her husband and her two lovely daughters.

Jose Miguel is a software engineer who specializes in mobile development, with 5 years
of experience. He has an Android associate developer certification from Google.
He is also involved in the start-up tech community as a mentor in the OpenLab Peru
community, bringing guidance to new Android developers and entrepreneurs who
want to gain certain expertise in the mobile world. He resides in Lima, Peru, and enjoys
watching movies, reading comics, boxing, traveling, and learning about new cultures and
people around the world.

Table of Contents
Preface

Part 1 – Introduction

1
Getting Started with Clean Architecture

Technical requirements � 4
The architecture of a legacy app � 4
Legacy analysis � 11

Software design principles � 13
SOLID principles � 14
Component cohesion principles � 15
Component coupling principles � 16

Exploring the evolution
of Android � 18
Fragments � 18

The Gradle build system � 20
Networking � 21
Humble objects � 21
Functional paradigms � 22
Kotlin adoption � 22
Dependency injection � 23
Android architecture components � 23
Coroutines and flows � 24
Jetpack Compose � 25

Enter clean architecture � 31
Summary � 40

2
Deep Diving into Data Sources

Technical requirements � 42
Understanding Kotlin
coroutines and Flows � 42
Kotlin coroutines � 46
Exercise 02.01 – Using Kotlin coroutines � 48
Kotlin Flows � 54
Exercise 02.02 – Using Kotlin Flows � 56

Using OkHttp and Retrofit
for networking � 58
Exercise 02.03 – Using OkHttp and
Retrofit � 63

Using the Room library
for data persistence � 69

viii Table of Contents

Exercise 02.04 – Using Room
to persist data � 72

Understanding and using the
DataStore library � 77

Exercise 02.05 – Using DataStore to
persist data � 78

Summary � 83

3
Understanding Data Presentation on Android

Technical requirements � 86
Analyzing lifecycle-aware
components � 86
Exercise 3.1 – Using ViewModel
and LiveData � 97

Using Jetpack Compose to
build UIs � 102
Exercise 3.2 – Navigating using
Jetpack Compose � 110

Summary � 115

4
Managing Dependencies in Android Applications

Technical requirements � 118
Introduction to DI � 118
Using Dagger 2 to
manage dependencies � 123

Using Hilt to manage
dependencies � 130
Exercise 04.01 – using Hilt to
manage dependencies � 134

Summary � 140

Part 2 – Domain and Data Layers

5
Building the Domain of an Android Application

Technical requirements � 144
Introducing the app's
architecture � 144
Creating the domain layer � 148

Exercise 05.01 – Building
a domain layer � 158

Summary � 175

Table of Contents ix

6
Assembling a Repository

Technical requirements � 178
Creating the data layer � 178
Creating repositories � 181

Exercise 06.01 – Creating repositories � 186

Summary � 196

7
Building Data Sources

Technical requirements � 198
Building and using remote
data sources � 198
Exercise 07.01 – Building a remote
data source � 200

Building and integrating
local data sources � 214
Exercise 07.02 – Building a local
data source � 217

Summary � 230

Part 3 – Presentation Layer

8
Implementing an MVVM Architecture

Technical requirements � 234
Presenting data in Android
applications � 234
Presenting data with MVVM � 239
Exercise 08.01 – Implementing MVVM � 241

Presenting data in multiple
modules � 253
Exercise 08.02 – Multi-module data
presentation � 256

Summary � 274

9
Implementing an MVI Architecture

Technical requirements � 276
Introducing MVI � 276
Implementing MVI
with Kotlin flows � 280

Exercise 09.01 – Transitioning to MVI � 287

Summary � 301

x Table of Contents

10
Putting It All Together

Technical requirements � 304
Inspecting module
dependencies � 304
Exercise 10.01 – Reduce dependencies � 307

Instrumentation testing � 315
Exercise 10.02 – Instrumented testing � 324

Summary � 339

Index
Other Books You May Enjoy

Preface
As an application's code base increases, it becomes harder for developers to maintain
existing features and introduce new ones. In this clean architecture book, you'll learn
how to identify when and how this problem emerges and how to structure your code to
overcome it.

The book starts by explaining clean architecture principles and Android architecture
components and then explores the tools, frameworks, and libraries involved. You'll learn
how to structure your application in the Data and Domain layers, the technologies that
go in each layer, and the role that each layer plays in keeping your application clean. You'll
understand how to arrange the code into these two layers and the components involved
in assembling them. Finally, we'll cover the Presentation layer and the patterns that can be
applied to have a decoupled and testable code base.

By the end of this book, you'll be able to build an application following clean architecture
principles and have the knowledge you need to maintain and test the application easily.

Who this book is for
This book is for Android developers who want to learn about managing the complexity of
their applications and is also highly recommended for intermediate or advanced Android
developers looking for a go-to guide for clean architecture and the integration of various
Android technologies. New developers familiar with the fundamentals of Android app
development will find this book useful, too.

What this book covers
Chapter 1, Getting Started with Clean Architecture, starts by presenting the evolution of
Android apps with regards to how business logic was structured, and the problems caused
by these approaches. It will then transition to how certain patterns were applied to tackle
these issues, revealing other sets of issues. Finally, the concept of clean architecture will
be introduce, as well as how its principles can be used to solve some of the problems
presented previously.

xii Preface

Chapter 2, Deep Diving into Data Sources, covers what Android tools and frameworks
are available to use with regard to the implementation of the data layer and details
and expands on the ones that will be used later in the book, such as Kotlin flows and
coroutines, Retrofit, Room, and DataStore.

Chapter 3, Understanding Data Presentation on Android, covers what Android tools and
frameworks are available to use with regard to the implementation of the presentation
layer and will detail and expand on the ones that will be used later in the book, such as
Android ViewModel and Jetpack Compose.

Chapter 4, Managing Dependencies in Android Applications, provides a quick overview
of dependency injection and how it works. It briefly explores some of the dependency
injection tools available for Android development, ending with the Hilt dependency
injection framework, about which it goes into a more detailed explanation because it will
be used in many of the exercises in the book.

Chapter 5, Building the Domain of an Android Application, describes how to build
a domain layer and what components are part of this layer. You will learn about entities
and use cases or interactors and what roles they play when it comes to designing the
architecture of your application.

Chapter 6, Assembling a Repository, covers the Data layer and the responsibilities this layer
has when it comes to managing an application's data, and how it can use the Repository
pattern to achieve this.

Chapter 7, Building Data Sources, continues the exploration into the Data layer and some
examples of data sources that can be defined in Android. You will learn about using
remote data sources to load data from various servers as well as local data sources such as
Room and DataStore.

Chapter 8, Implementing an MVVM Architecture, presents the MVVM architecture pattern
and how it can be used in an application's presentation layer. You will learn how to use the
Android ViewModel and LiveData to build an app with MVVM and integrate use cases
into the ViewModel.

Chapter 9, Implementing an MVI Architecture, presents the MVI architecture pattern and
how it can be used in an application's presentation layer. You will learn how to use Kotlin
flows and Android ViewModel to implement the MVI pattern.

Chapter 10, Putting It All Together, covers the benefits of clean architecture by analyzing an
example of an application that implements the concepts and then adding instrumentation
tests with Espresso and Jetpack Compose. The introduction of UI tests serves as a good
example of how we can inject and change certain behaviors in the application for testing
purposes without needing to modify the application's code.

Preface xiii

To get the most out of this book
You'll need the Android Studio IDE installed on your computer (version Arctic Fox
2020.3.1 Patch 3 or above) and Java 8 to be installed. Using later versions of Java such as
Java 11 might cause errors when building some of the exercises. Knowing how to trigger
builds on an emulator or device and Gradle Synchronizations from Android Studio is
recommended before attempting the exercises presented in the book.

You can expand on the final exercise of the book by optimizing the way the data is loaded,
introducing in-memory caches, or integrating new network calls to fetch additional data
for the users. You can also improve the instrumentation testing by adding interaction with
the list of data and opening new screens and asserting that the correct data is displayed.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Download the example code files
The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Clean-Android-Architecture. If there's an update to the
code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Code in Action
The Code in Action videos for this book can be viewed at https://bit.ly/3LqAa30

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781803234588_ColorImages.pdf

xiv Preface

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Inside the resources folder, create a subfolder called mockito-
extensions. Inside this folder, create a file named org.mockito.plugins.
MockMaker, and inside this file, add the text mock-maker-inline."

A block of code is set as follows:

data class User(

 val id: String,

 val firstName: String,

 val lastName: String,

 val email: String

) {

 fun getFullName() = "$firstName $lastName"

}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

…

@Composable

fun Screen(viewModel: MainViewModel = viewModel(factory =
MainViewModelFactory())) {

 viewModel.uiStateLiveData.observeAsState().value?.let {

 UserList(uiState = it)

 }

}

…

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "Create
a new project in Android Studio using an Empty Compose Activity."

Tips or Important Notes
Appear like this.

Preface xv

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of your
message.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if you
would report this to us. Please visit www.packtpub.com/support/errata and fill in
the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share Your Thoughts
Once you've read Clean Android Architecture, we'd love to hear your thoughts! Please click
here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

Part 1 – Introduction

In this part, you will become familiar with the notion of clean architecture and the
principles it provides. This part also explores the tools, frameworks, and libraries used
later in the book.

This part includes the following chapters:

•	 Chapter 1, Getting Started with Clean Architecture

•	 Chapter 2, Deep Diving into Data Sources

•	 Chapter 3, Understanding Data Presentation on Android

•	 Chapter 4, Managing Dependencies in Android Applications

1
Getting Started with

Clean Architecture
In this chapter, we'll take you back and show you how a feature would have been
implemented in the past while analyzing the potential issues and problems with that
approach. Then, we'll look at some key design principles for software development and
apply those principles to our legacy examples. After that, we'll cover the evolution of the
Android platform and the various libraries and frameworks that have emerged. We'll also
see how they can be integrated while adhering to various software design principles.

After that, we'll introduce clean architecture so that we know what our system needs to be
improved and what questions we must ask, as developers, so that we can create a robust,
scalable, maintainable, and testable application.

In this chapter, we're going to cover the following main topics:

•	 The architecture of a legacy app

•	 Software design principles

•	 Exploring the evolution of Android

•	 Enter clean architecture

By the end of this chapter, you will know about the evolution of Android development, its
architecture, and its design concepts, as well as the concept of clean architecture and how
it can be used to build flexible, maintainable, and testable applications.

4 Getting Started with Clean Architecture

Technical requirements
For this chapter, you will need Android Studio Arctic Fox 2020.3.1 Patch 3.

The following are the hardware requirements for this chapter:

•	 Windows:

	� 64-bit Microsoft® Windows® 8/10

	� x86_64 CPU architecture; 2nd generation Intel Core or newer, or an AMD CPU
with support for a Windows Hypervisor

	� 8 GB of RAM or more

	� 8 GB of available disk space minimum (IDE + Android SDK + Android Emulator)

	� 1,280 x 800 minimum screen resolution

•	 Mac:

	� macOS® 10.14 (Mojave) or higher

	� ARM-based chips, or 2nd generation Intel Core or newer with support for
Hypervisor.Framework

	� 8 GB of RAM or more

	� 8 GB of available disk space minimum (IDE + Android SDK + Android Emulator)

	� 1,280 x 800 minimum screen resolution

•	 Linux:

	� Any 64-bit Linux distribution that supports Gnome, KDE, or Unity DE; GNU C
Library (glibc) 2.31 or later

	� x86_64 CPU architecture; 2nd generation Intel Core or newer, or AMD processor
with support for AMD Virtualization (AMD-V) and SSSE3

	� 8 GB of RAM or more

	� 8 GB of available disk space minimum (IDE + Android SDK + Android Emulator)

	� 1,280 x 800 minimum screen resolution

The architecture of a legacy app
In this section, we will look at how Android applications used to be built in the past and
what difficulties developers had with the approach taken.

The architecture of a legacy app 5

Before we start analyzing an older application, we must distinguish the architecture
and design of an application. To borrow from the construction industry, we can define
architecture as a plan for the structure of a building; a design would be a plan to create
each part of the building. Translating this into the world of software engineering, we can
say that the architecture of an application or a system would be defining a plan that would
incorporate the business and technical requirements, while software design deals with
integrating all the components, modules, and frameworks into this plan. In an ideal world,
you would want to recognize the architecture of an application in the same way you would
recognize the architecture of your house.

Now, let's look at the four main components of an Android application:

•	 Activities: These represent the entry points for interacting with the user.

•	 Services: These represent the entry points for having an app run in the background
for all kinds of reasons, such as large downloads or audio playback.

•	 Broadcast Receivers: These allow the system to interact with an application for
a variety of reasons.

•	 Content Providers: These represent a way for an application to manage
application data.

Using and relying on these components created a challenge for developers because an
app's architecture became dependent on the Android framework, mainly when it came to
implementing unit tests. To understand why this is a problem, let's look at an example of
what some older application code would look like. Let's suppose you have been asked to
fetch some data from a backend service. The data would be served in the form of JSON
through an HTTP connection.

It wasn't uncommon to see a class such as BaseRequest.java, which would execute
the request and depend on abstraction in the form of JsonMapper.java, to convert the
data from a String into a Plain Old Java Object (POJO). The following code represents
an example of how fetching the data might be implemented:

public class BaseRequest<O> {

 private final JsonMapper<O> mapper;

 protected BaseRequest(JsonMapper<O> mapper) {

 this.mapper = mapper;

 }

6 Getting Started with Clean Architecture

 public O execute() {

 try {

 URL url = new URL("schema://host.com/path");

 HttpURLConnection urlConnection =

 (HttpURLConnection) url.openConnection();

 int code = urlConnection.getResponseCode();

 StringBuilder sb = new StringBuilder();

 BufferedReader rd = new BufferedReader(new

 InputStreamReader(urlConnection.

 getInputStream()));

 String line;

 while ((line = rd.readLine()) != null) {

 sb.append(line);

 }

 return mapper.convert(new JSONObject

 (sb.toString()));

 } catch (Exception e) {

 …

 } finally {

 if (urlConnection != null) {

 urlConnection.disconnect();

 }

 }

 return null;

 }

}

In the execute method, we would use HttpURLConnection to connect to the
backend service and retrieve the data. Then, we would read it into a String, which
would then be converted into a JSONObject and then passed to JsonMapper to be
converted into a POJO.

The JsonMapper.java interface would look something like this:

interface JsonMapper<T> {

 T convert(JSONObject jsonObject) throws JSONException;

}

The architecture of a legacy app 7

This interface represents the abstraction of converting a JSONObject into any POJO.

The use of generics allows us to apply this logic to any POJO. In our case, the POJO should
look something like ConcreteData.java:

public class ConcreteData {

 private final String field1;

 private final String field2;

 public ConcreteData(String field1, String field2) {

 this.field1 = field1;

 this.field2 = field2;

 }

 public String getField1() {

 return field1;

 }

 public String getField2() {

 return field2;

 }

}

The ConcreteData class will be responsible for holding the data we will receive from
the backend service. In this case, we just have two String instance variables.

Now, we need to create a concrete JsonMapper.java that will be responsible for
converting a JSONObject into ConcreteData:

public class ConcreteMapper implements JsonMapper<ConcreteData>
{

 @Override

 public ConcreteData convert(JSONObject jsonObject) {

 return new ConcreteData(jsonObject.optString

 ("field1"), jsonObject.optString("field2"));

 }

}

8 Getting Started with Clean Architecture

The convert method creates a new ConcreteData object, extracts the data from the
JSONObject object, and populates the field1 and field2 values.

Next, we must create a ConcreteRequest.java that will extend BaseRequest and
use ConcreteMapper:

public class ConcreteRequest extends BaseRequest<ConcreteData>
{

 public ConcreteRequest() {

 super(new ConcreteMapper());

 }

}

This class will inherit the execute method from BaseRequest and supply a new
ConcreteMapper object so that we can convert the backend data into ConcreteData.

Finally, we can use this in our Activity to execute the request and update our user
interface (UI) with the result. Here, we have a limitation: we cannot execute long-running
operations on the main (UI) thread and we cannot update our views from any other
thread except the UI thread. This means that we would need something to help with this.
Luckily, Android provides the AsyncTask class, which offers a set of methods for doing
work on a separate thread and then processing the results on the main thread. However,
we risk creating a context leak (if, for any reason, the Activity object is destroyed,
then the garbage collector will not be able to collect the Activity object while
AsyncTask is running since Activity has a dependency on AsyncTask) by using
an inner AsyncTask class. To circumvent this, the recommended approach is to create
a WeakReference for our Activity. This way, if the Activity object is destroyed
either by the user or the system, its reference can be collected by the garbage collector.

Now, let's look at the code for our MainActivity:

public class MainActivity extends Activity {

 private TextView textView;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 this.textView = findViewById(R.id.text_view);

The architecture of a legacy app 9

 new LoadConcreteDataTask(this).execute();

 }

 private void update(ConcreteData concreteData) {

 textView.setText(concreteData.getField1());

 }

}

This class is responsible for loading the UI and starting LoadConcreteDataTask. The
update method will then be called by LoadConcreteDataTask to show the data in
the user interface.

LoadConcreteDataTask must be an inner class of MainActivity:

public class MainActivity extends Activity {

 …

 private static class LoadConcreteDataTask extends

 AsyncTask<Void, Void, ConcreteData> {

 private final WeakReference<MainActivity>

 mainActivityWeakReference;

 private LoadConcreteDataTask(MainActivity

 mainActivity) {

 this.mainActivityWeakReference = new

 WeakReference<>(mainActivity);

 }

 @Override

 protected ConcreteData doInBackground(Void...

 voids) {

 return new ConcreteRequest().execute();

 }

 @Override

 protected void onPostExecute(ConcreteData

 concreteData) {

 super.onPostExecute(concreteData);

 MainActivity mainActivity =

10 Getting Started with Clean Architecture

 mainActivityWeakReference.get();

 if (mainActivity != null) {

 mainActivity.update(concreteData);

 }

 }

 }

}

In LoadConcreteDataTask, we take advantage of the doInBackground method,
which is executed on a separate thread to load our data and then update our UI in the
onPostExecute method. We also hold a WeakReference to MainActivity so that
it can be safely garbage collected when destroyed. This also means that we will need to
check if the reference still exists before updating the user interface.

The class diagram for the preceding code looks as follows:

Figure 1.1 – A class diagram for an older Android app

Here, we can see how the dependencies move from MainActivity toward the
ConcreteRequest class, with one exception between MainActivity and
LoadConcreteDataTask, where both classes depend on each other. This is a problem
because the classes are then coupled together and making a change to one implies making
a change to the other. Later in this chapter, we will look at some principles that can help us
avoid such dependencies.

The architecture of a legacy app 11

Now that we have an idea of what a legacy application looks like, let's see what issues we
may encounter if we follow this path.

Legacy analysis
In this section, we will analyze some of the problems that legacy applications have.

Let's ask ourselves the following questions:

1.	 What can we unit test?
2.	 What happens if, instead of showing the value of field1 from ConcreteData,

we need to show field1+field2?
3.	 What happens when the requirements for this particular screen change and data

needs to be retrieved from another endpoint on top of this one?
4.	 What happens if we need to introduce caching or SQLite persistence?
5.	 What happens if another activity needs this particular use case?

Let's answer these questions:

•	 Answer 1: The answers to all of these questions will come with headaches. The
first question is a mix of technical limitations and doubtful design techniques. The
technical limitation comes from the fact that the code will execute on the device
or an emulator, but we want our unit tests to be executed on our development
machines. This is the reason we have the split between the androidTest and
test directories. Theoretically, we can write our unit tests so that they can run on
the emulator, but that takes more time and instability. We can now execute these
types of tests in the cloud using technologies such as Firebase Test Lab, but that
would inevitably cost us money and it's in our interest to avoid taking in such costs.
Realistically, we are left with one option and that is to test as much as possible using
local unit tests instead of instrumented ones. To solve this, we will need to separate
the Android components we use from the Java components.

•	 Answer 2: The second question produces a similar problem. The easiest choice here
would be to put that concatenation into MainActivity or add a method into the
ConcreteData class that will return the concatenated result. But either of these
will come with downsides. If we move the concatenation into MainActivity, we
will put logic that can be unit tested into a class that is very hard and shouldn't be
unit tested. If we create a method to concatenate in ConcreteData, we risk giving
responsibility to this class that it shouldn't have since it's related more to the UI than
the actual representation of the JSON itself. What if, in the future, the networking
aspect is developed by another team? You would need to rely on that particular
team to create this update.

12 Getting Started with Clean Architecture

•	 Answer 3: The answer to the third question looks straightforward as well. We
must create new concrete implementations for the new data to be added and the
associated request. Then, we will either create a separate class that will extend
AsyncTask or execute both requests in the same LoadConcreteData class and
then update the UI. If we create a separate AsyncTask, then we will need to make
the activity responsible for managing the results and balance the two AsyncTasks,
which again creates a problem concerning testing. If we execute the requests in the
same AsyncTask, then the responsibility of AsyncTask increases, which we may
want to avoid.

•	 Answer 4: The fourth question presents us with a new challenge. Let's say we add a
new database class that contains all the methods to perform create, read, update,
and delete (CRUD) operations. Which one of our classes would have a dependency
on this class? The choices here would be between the two request classes and
LoadConcreteDataTask. Here, we run into the same issues that we did in the
previous questions. If we used the request classes, we would end up being more
responsible for dealing with HTTP connections than handling calls to the database.
If we use LoadConcreteDataTask, we make the answer to the fifth question
even harder.

•	 Answer 5: Based on the previous answers, we notice that a lot of work may end
up being moved to the LoadConcreteDataTask class. Now, let's imagine
that another activity with a completely different UI and a different interpretation
of that data will rely on the same use case. One solution is to duplicate
LoadConcreteDataTask into the new activity. This is not a great idea because a
change in the requirements will make the developers change all the tasks. A better
approach would be to create a new abstraction that will remove the dependency
between LoadConcreteDataTask and Activity. This would allow us to reuse
the same class for both activities. Let's say that the activities would need different
types of data for each interpretation. Here, we could follow the JsonMapper
example and create an interface that would convert ConcreteData into a generic
type, provide two implementations for each activity, and create the necessary POJOs
to convert into.

Another question that can be asked here is, "What amount of work would be necessary
to export the business logic into another project?" This is an important question because
it highlights how we should structure our code so that it can be reused by others without
making it a pain for them to integrate. If we were to answer this, we must first ask,
"Where's the business logic?" The answer would probably be LoadConcreteDataTask.
Can we export that and publish it somewhere where other developers can get it?

Software design principles 13

The answer is no, because of its dependency on MainActivity. This question highlights
an important aspect of defining an architecture, namely drawing the boundaries around
your components. A component can be defined as the smallest piece of deliverable code.
In our case, it would be the equivalent of a module. Now, let's say we were in a place
where we could ship out our LoadConcreteDataTask. A follow-up question would
be, "Would the data be hosted on the same service?" followed by, "Is it in the same JSON
format?" Here, we would need to draw a boundary between LoadConcreteDataTask
and BaseRequest and remove such dependencies on how the data is retrieved.

The reason these questions were raised and answered is that all those scenarios have
happened in the past and they will all likely happen in the life cycle of an application. We,
as developers, tend to answer those questions in our code differently based either on time
constraints, the rigor imposed on the team we work in, our ambition to deliver something
fast by constantly challenging ourselves, and our experience or the team's experience. The
fact that we had the option to make a less desirable solution or to be stuck in a situation
where we had to pick between the frying pan or the fire represents a problem. Sometimes,
it is good to take a step back from our daily routine, ask ourselves some of these questions,
do mind experiments to see how our code may end up in those scenarios, and assess what
would happen if that would happen now or 1 or 2 years from now.

A common scenario a lot of Android developers found themselves in was having a lack of
businesses investing in testing because it would take too much time and there was a need
to go to market. In many of these cases, the apps became harder to maintain over time,
so more developers needed to be hired to keep the same productivity as a team compared
to when they had fewer developers. When code is written with the notion that it needs
to be unit tested, then the way we write that code becomes more rigorous and more
maintainable. We start keeping track of how we create instances and separate the things
we can test from the things we can't, we apply creational design patterns, and we also
shorten the sizes of the methods in our classes, among other things.

We now have an idea of how applications used to be written in the past and the problems
that were caused by the approaches that were taken, such as issues with the testability
and maintainability of an application due to dependencies on the Android framework.
Next, we will look at some design principles that will prove useful in how we write an
application.

Software design principles
In this section, we will analyze a set of design principles that are adopted by developers
worldwide to improve their systems and can also be applied to Android development. We
will mainly focus on the principles defined by Robert C Martin (also known as Uncle Bob)
for classes and components because they are well suited to Android development.

14 Getting Started with Clean Architecture

Based on the examples in the previous section, we understand that our code bases
should be maintainable, understandable, and flexible. There is a set of software design
principles that we can turn to for help when we develop classes or components. Think of
a component as the minimum amount of code that can be released as part of a system.
In Android, you can view them as individual modules. They don't necessarily need to be
modules, but they can be organized as if they are.

SOLID principles
These are some of the most known design principles. The name is an acronym for a set of
design principles that were collected by Robert C Martin. These principles are as follows:

•	 Single responsibility principle

•	 Open-closed principle

•	 Liskov substitution principle

•	 Interface segregation principle

•	 Dependency inversion principle

Let's look at these principles in detail:

•	 Single Responsibility Principle: This states that a class should have one
responsibility or one reason to change. Looking at our example, let's suppose
someone makes a change to the BaseRequest class to change how the HTTP
request is executed. Let's assume that we now have two different AsyncTasks
that will load the data. Both of these will be impacted by the change in the
BaseRequest class. A solution would be to delegate the execution of the request
to different classes for each particular use case. This would also allow developers to
work on different features related to backend communication without changing the
same source file.

•	 Open-Closed Principle: This states that a class should be open for extension and
closed for modification. Thinking back to our example, this principle would answer
the question, "What would happen if an activity requires this particular use case?"
The abstractions we discussed in how to answer that question would serve as a good
example of implementing this principle.

Software design principles 15

•	 Liskov Substitution Principle: This states that a parent class should be replaced
by a child class without changing the behavior of the system. An example of this
principle is if you have a class called Bird and a sub-class called Duck. If you are
using references of Bird in your code and substitute those usages with Duck,
then your code should remain unchanged. A famous example of a violation of
this principle is having a Rectangle class with two members named width and
height and a sub-class named Square. In reality, a square is a rectangle, but our
modeling of a square wouldn't be a rectangle because the rules in Square would
mean that the width and height will always have to be the same. If you were to swap
these two dependencies, then your code would break.

•	 Interface Segregation Principle: This states that we should avoid using large
interfaces and instead break them up into smaller interfaces. The idea here is that
code shouldn't depend on methods it doesn't use. An example of this is defining
interfaces whose methods don't need to be implemented. A good example
of this is the approach that's taken in Android user interfaces by separating
OnClickListener, OnLongClickListener, and OnTouchListener.

•	 Dependency Inversion Principle: This states that we should depend on
abstractions rather than concretions. The idea here is to depend as much as possible
on abstract classes and interfaces. This can be very difficult to achieve considering
that we rely on concretions a lot of the time. Here, we should identify parts of the
code that are constantly developed and subject to change and introduce layers of
abstractions between our code and these classes. A good way to protect against
this is through dependency injection frameworks such as Dagger and Hilt, which
generate factories to create volatile components.

SOLID principles are used across the object-oriented programming (OOP) field to
create applications that are flexible and able to incorporate new features and requirements.
The principles that follow represent an expansion of SOLID.

Component cohesion principles
We can define cohesion by how well the classes in a component belong together or what
classes belong in a certain component. In the past, components were assembled based on
the context without any particular guiding principle. This would cause issues such as a
change in the dependencies of a component triggering a change in the dependants of this
component, without this having any relevance to the dependants.

16 Getting Started with Clean Architecture

The three principles are as follows:

•	 Reuse/Release Equivalence Principle (REP): This states that we group classes
in a component that can be released together. In Android development, this
would translate to making sure that every module you create should be able to be
published and used by other developers.

•	 Common Closure Principle (CCP): This states that components should have
one reason to change. This principle is an application of the single responsibility
principle for components.

•	 Common Reuse Principle (CRP): This states that a component should only have
classes that should be used together. This represents the interface segregation
principle for your component. In Android, this would mean that you should make
sure that the users of your Android modules depend on all your classes in the
module, not just some.

When these principles are incorporated, they end up conflicting with each other. REP
and CCP tend to make components bigger, while CRP tends to make them smaller. The
idea is to always match the current requirements of the application and find the middle
ground between these principles. After that, you should constantly monitor how new
requirements would affect this middle ground.

Now that we've seen how SOLID can be applied to building a particular component
through the component cohesion principles, let's learn how to manage a set of
components.

Component coupling principles
These principles deal with how to manage the relationships between our components in
an Android application. In Android, this would be represented by how to manage the
Gradle dependencies between different modules. The principles are as follows:

•	 Acyclic Dependencies Principle: This states that we should avoid cyclic
dependencies between components. Applying this to Android would mean
that the dependencies that our modules have most not be cyclical (for example,
module A depends on module B, which depends on module A). Fortunately,
this rule is currently enforced by the build system, which doesn't allow cyclical
dependencies. A solution to this would be to create a new module in which we
apply the dependency inversion principle and make one of the modules depend on
the abstraction and create the implementation in the second module. If this is not
possible, we can create a new module that can depend on both existing modules. An
example of this can be seen in the following diagram:

Software design principles 17

Figure 1.2 – Cyclic module dependency

•	 Stable Dependencies Principle: This states that less stable modules should depend
on more stable modules. A component's stability is defined as the ratio between
outgoing dependencies (dependency on other components) and the total number of
dependencies. The closer the number is to 0, the more stable a component becomes.
This means that stable components should avoid having changes made because
this will cause potential issues for the components that depend on the stable ones.
One solution to avoid the dependencies between stable components and volatile
components would be using abstract components. These are components that will
contain nothing but abstractions.

•	 Stable Abstractions Principle: This states that components that are likely to change
should be more concrete and that stable components should be more abstract. This
principle represents an application of the open-closed principle. We would want
our high-level architecture decisions to be flexible enough to be changed without
having to modify existing source code. We can achieve this using abstract classes.
The abstractness of a component is defined as the ratio between the number of
abstract classes and interfaces inside a component and the total number of classes
in the component. The closer to 1 the value gets, the more abstract the component
becomes. A component with 0 stability and 0 abstractness represents a zone of pain
because it is very hard to change. A component with 1 stability and 1 abstractness
is called a zone of uselessness because we have an independent component with no
implementations. The aim is to get as many components as possible in either the 0
stability and 1 abstractness or 1 stability and 0 abstractness range.

18 Getting Started with Clean Architecture

With that, we have looked at some of the key design principles that should help us tackle
problems that we face while developing an application. The SOLID principles show us
how we should structure our code into classes, while the component cohesion principles
and component coupling principles show us how we should structure our classes into
separate modules, as well as how we should establish the relationships between those
modules. In the next section, we will see how these principles lead to the evolution of the
Android platform and what an application may look like now.

Exploring the evolution of Android
In this section, we will look at key releases and changes that have been made to the
Android framework and supporting libraries that have shaped the development of
applications and how applications have evolved because of these changes.

We started by looking at an example of what the code in an older Android application
looked like before looking at the design principles we should incorporate into our work.
Now, let's see how the Android framework evolved and how some of our questions
from the beginning have been answered. We will analyze some of the newer libraries,
frameworks, and technologies that we can incorporate into an Android application.

Fragments
The introduction of fragments was meant to solve important issues developers were facing
– that is, the activity code would become too big and hard to manage. They were released
on Android Honeycomb, which was an Android release that only targeted tablets. The
introduction of fragments was also meant to solve the issue of having different displays
for activities in landscape versus activities in portrait. Fragments are meant to control
portions of an activity's user interface.

Another improvement fragments brought was the ability to change and replace fragments
at runtime. There was even a separate back stack for Fragments that the activity would
be responsible for. This comes at a couple of costs: the life cycle of the fragment was
even more complex than the life cycle of the activity, where you would have fragments
that had their views destroyed but the fragments themselves weren't. Another cost was
the communication between two fragments. If you needed to update the user interface
being handled by Fragment1 because of a change in Fragment2, you would need to
communicate through the activity. This meant that every time a Fragment needed to be
reused by a different activity, then the activity would be forced to adapt to this:

Exploring the evolution of Android 19

Figure 1.3 – Activity and fragment life cycle

In the preceding figure, we can see the difference between the lifecycle of activities and
the lifecycle of fragments. We can observe how fragments have their own internal lifecycle
for managing the views that they display between the onCreateView method and
onDestroyView methods. This is often the reason why in many applications, you will
see these methods used to load data and on the opposite site unsubscribing from any
operations that might trigger a change in the user interface.

20 Getting Started with Clean Architecture

The Gradle build system
Initially, Android development used the Eclipse IDE and Ant as its build system. This
came with certain limitations for applications. Things such as flavors were not available at
the time. The release of Android Studio, along with the Gradle build system, provided new
opportunities and features. This allows us to write extra scripts and easily integrate plugins
and tools, such as performance monitoring of an application, Google Play services,
Firebase Crashlytics, and more. This is often done through ".gradle" files. These files
are written in a language called Groovy. Another improvement that was added was the
usage of the ".gradle.kts" extensions, where we can provide the same configurations
using the Kotlin language. The following code shows what the build.gradle file for
a module looks like:

plugins {

 id 'com.android.application'

}

android {

 compileSdk 31

 defaultConfig {

 minSdk 21

 targetSdk 31

 versionCode 1

 versionName "1.0"

 }

 buildTypes {

 release {

 }

 }

 compileOptions {

 }

}

dependencies {

 implementation ""

}

Exploring the evolution of Android 21

In the plugins section, we can define external plugins that will provide certain methods
and scripts that our project can use. Examples include annotation processing plugins, the
Parcelize plugin, and Room plugins. In this case, the com.android.application
plugin offers us the android configuration, which we can then use to specify the
app version, what Android versions we want the app to be accessible from, various
compilation options, and configurations for how the app should be built for the end user.
In the dependencies section, we specify which external libraries we want to add to the
project.

Networking
Quite a few popular networking libraries have emerged, mainly in the open sourcing
community. A large proportion of the applications in Google Play rely on HTTP
communication and a large proportion of them use JSON data. With the addition of
networking libraries, JSON serialization/deserialization to POJOs also became adopted.
What this means for developers is that the communication with the backend is simplified
– we no longer need to concern ourselves with how the actual communication is done;
we only point to where we want the data from and provide the models that are required
for this communication. The libraries will take care of the rest. Some of the most popular
libraries include Volley and Retrofit. In terms of object serialization, we have libraries such
as Moshi and GSON.

Humble objects
Because activities and fragments are difficult to unit test, the code inside them needed
to be split into testable sections and untestable sections. Because of this necessity, two
patterns emerged: Model View Presenter (MVP) and Model View ViewModel (MVVM).
Sometimes, these patterns are referred to as architecture patterns. This shouldn't be
confused with the entire architecture of the app. The idea is to turn activities and
fragments into humble objects with no logic, keep the references to the user interface
objects, and shift the logic into the presenter and ViewModel, which we can write unit
tests for. We will focus more on the particularities of each in Chapter 8, Implementing an
MVVM Architecture.

22 Getting Started with Clean Architecture

Functional paradigms
Just like objected-oriented languages have adopted paradigms from functional
programming, so has the Android development world in the form of RxJava. Functional
programming works on the premise that programs are built from composing functions
rather than imperative statements such as the ones in Java. RxJava is a library that allows
developers to implement event-driven applications. It offers observables (for emitting
data) and subscribers (for subscribing to that data). What made this library appealing to
developers was how it deals with threading. Let's assume you wanted an operation to be
executed on a separate thread, and then you wanted to transform your data – all you need
to do here is invoke the data you want, apply mapping functions, and then subscribe to
get the final result. The added benefit is that you can chain different operations, have them
processed, and get the result with all of the operations. All of this removes the need for
creating and managing different AsyncTasks or threads.

Kotlin adoption
RxJava introduced some aspects of functional programming. Its adoption and transition
into Kotlin programming has added others. One of the most important is the concept of
mutability. In Java, all variables are mutable unless they're declared otherwise through
the final keyword. In Kotlin, all the variables must have their mutability declared.
Why is this important? Because of multi-threading. If you had an application where
multiple threads were executed at the same time and they all interacted with the same
object, you would end up in a situation where you would either modify the same value
at the same time or create deadlocks in which a thread would wait for another thread to
release a resource, but the second thread would need access to a resource that the first
thread is currently holding. This introduction helps developers aim for a greater degree of
immutability, which would increase thread safety because immutable variables are thread-
safe. Lambdas represent another great feature of Kotlin that allows boilerplate code to
be reduced when you're dealing with callbacks. Other benefits of the adoption of Kotlin
include that you can remove boilerplate code by introducing data classes, which represent
POJOs, and introducing sealed classes, which allow developers to define enum-like
structures that can carry data.

Exploring the evolution of Android 23

Dependency injection
Dependency injection represents the decoupling of object invocation and object creation.
Why is this important? Mainly because of testing. It's easier to write unit tests for classes
that have their dependencies injected rather than adding extra responsibilities, such as
creating new instances for all of the dependencies in that class. Another benefit is in
situations where we depend on abstractions. If we have a dependency on an abstraction,
we can easily switch between different implementations, depending on different
circumstances. Several libraries have emerged to tackle this issue: Dagger, Koin, and Hilt.
Dagger is more of a general library that is not only Android applicable, but also applicable
for other Java-based platforms. It aims to manage our dependencies using components
and modules. Components are responsible for how the dependencies are managed,
while modules are responsible for providing the appropriate dependencies. It relies on
annotation processors, which generate the necessary code that will be responsible for
managing our dependencies. Koin is what's referred to as a service locator library. It keeps
a collection of all the dependencies and when a particular dependency is required, it will
look it up and provide it. Koin is an Android-specific library, and it provides support
for injecting specific Android dependencies. Hilt is the newest of these libraries and it is
built on top of Dagger. It removes the boilerplate code that was required for Dagger and
provides support for Android dependencies as well.

Android architecture components
This is represented by a set of libraries that help developers make their apps scalable,
testable, and maintainable. These libraries affect components that deal with activity and
fragment life cycles, persisting data, background work, and UIs. Here, we have seen the
introduction of concepts such as life cycle owners (such as activities and fragments),
the Android ViewModel, and LiveData. These are meant to solve problems developers
had with managing the state of a life cycle owner when it's destroyed and recreated by
the system. It puts the logic that, in the past, was handled by the life cycle owners and
delegated to the Android ViewModel. The combination of the Android ViewModel and
LiveData has helped developers implement the MVVM pattern, which is also life cycle
aware. This means that developers no longer have to concern themselves with stopping a
background task when the life cycle owner is destroyed.

24 Getting Started with Clean Architecture

The introduction of Room means that developers no longer have to deal with interacting
with the SQLite framework, which caused a lot of boilerplate code to be written to define
tables and various queries. Developers no longer need to deal with the SQLite interaction
and the many dependencies that come with it; instead, they can focus on creating their
own models and providing the abstractions for what needs to be queried, deleted,
updated, and deleted; Room will take care of the actual implementations. DataStore does
for SharedPreferences what Room does for SQLite. This is for when we want to store data
in key-value pairs instead of using an entire table. DataStore provides two options for
storing data: safely typed data and no type safety data.

With the addition of these new persistence libraries, the Repository pattern was adopted.
The idea behind this pattern is to create a class that will interact with all the data sources
we have in our application. As an example, let's imagine we have some data we will need
to fetch from our backend that will then need to be stored locally in case we want the
user to view it offline. Our repository would be responsible for fetching the data from the
network class and then storing it using the persistence class. The repository would sit in
between the local and remote classes and the classes that would want access to that data.

Regarding the UI, we now have access to view binding and data binding. Both of these
deal with how activities and fragments deal with the views that are declared in our XML
layout files. View binding generates references for each view we defined in our XML. This
solves an issue that developers would have in the past where a view would be deleted from
your XML file, but your application would still run because of another view with the same
name in another file. This would cause crashes in the past because the findViewById
function would return null. With view binding, we know at compile time what views we
have in our hierarchy and what views we don't. Data binding allows us to bind our views
to data sources. For example, we can bind a TextView in our XML file directly to a field
in our source code. This approach tends to work well with the MVVM pattern, in which
the ViewModel updates certain fields that are bound by views in our XML. This would
update what the view would display without it interacting with the activity.

Coroutines and flows
Coroutines came as a feature of the Kotlin language. The idea behind coroutines is to
execute data asynchronously in a very simplified manner. We no longer have to create
threads or AsyncTasks (which have been deprecated) and manage concurrency because
it's managed under the hood. Other features include that it's not bound to a particular
thread, and it can be suspended and resumed. Flows represent an extension of coroutines
where we can have multiple emissions of data, such as RxJava, providing similar benefits.

Exploring the evolution of Android 25

Jetpack Compose
This allows developers to build UIs directly in Kotlin without the use of XML files through
composable functions. This removes the amount of code that needs to be written for
building your UI. Compatibility with the other Android architecture component libraries
is provided, allowing for easier integration into your application. The following is an
example of what Compose looks like:

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 ExampleTheme {

 Surface {

 ExampleScreen()

 }

 }

 }

 }

}

@Composable

fun ExampleScreen() {

 Column(modifier = Modifier.padding(16.dp)) {

 TextField(

 value = "",

 onValueChange = {

 // Handle text change

 },

 label = { Text("Input") }

)

 Text(text = "Example text")

 Button(onClick = {

 // Handle button click

 }) {

 Text(text = "Button")

 }

 }

}

26 Getting Started with Clean Architecture

In this example, we can see a screen that contains an input field, some text that displays
Example Text, and a button with the text Button. The layout of the screen is defined
as a function annotated with the @Compose annotation. This content is then set in an
activity through the setContent method, where a theme is provided. We will expand
on how Jetpack Compose works later in this book.

Now, let's look at what our example code from the The architecture of a legacy app
section will look like after we transition it through some of the aforementioned Android
frameworks and updates. All our code will now be migrated to Kotlin. We will be using
libraries such as Retrofit and Moshi for networking and JSON serialization and Hilt for
dependency injection, as well as ViewModel, LiveData, and Compose for the UI layer. We
will discuss how these libraries work in the following chapters.

The ConcreteData class will look this:

@JsonClass(generateAdapter = true)

data class ConcreteData(

 @Json(name = "field1") val field1: String,

 @Json(name = "field1") val field2: String

)

The ConcreteData class is now a Kotlin data class and will use the Moshi library for
JSON conversion. Next, let's see what our HTTP request will look like when we use
something such as Retrofit to handle our HTTP communication:

interface ConcreteDataService {

 @GET("/path")

 suspend fun getConcreteData(): ConcreteData

}

Because we use Retrofit and OkHttp, we only need to define the template for the endpoint
we want to connect to and the data we want; the libraries will handle the rest. The
suspend keyword will come in handy for Kotlin flows.

Now, let's define a repository class that will be responsible for invoking this HTTP call on
a separate thread:

class ConcreteDataRepository @Inject constructor(private val
concreteDataService: ConcreteDataService) {

 fun getConcreteData(): Flow<ConcreteData> {

Exploring the evolution of Android 27

 return flow {

 val fooList = concreteDataService.

 getConcreteData()

 emit(fooList)

 }.flowOn(Dispatchers.IO)

 }

}

ConcreteDataRepository will have a dependency on ConcreteDataService,
which it will call to fetch the data. It will be responsible for retrieving the data
on a separate thread by using Kotlin flows. The constructor will be annotated
with the @Inject annotation because we are using Hilt, which will inject
ConcreteDataService into ConcreteDataRepository.

Now, let's create a ViewModel that will depend on the repository to load the
appropriate data:

@HiltViewModel

class MainViewModel @Inject constructor(private val
concreteDataRepository: ConcreteDataRepository) :

 ViewModel() {

 private val _concreteData = MutableLiveData

 <ConcreteData>()

 val concreteData: LiveData<ConcreteData> get() =

 _concreteData

 fun loadConcreteData() {

 viewModelScope.launch {

 concreteDataRepository.getConcreteData()

 .collect { data ->

 _concreteData.postValue(data)

 }

 }

 }

}

28 Getting Started with Clean Architecture

MainViewModel will then use ConcreteDataRepository to retrieve the data,
subscribe to the result, and post the result in LiveData, which MainActivity will
subscribe to.

Now, let's create MainActivity:

@AndroidEntryPoint

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 Screen()

 }

 }

}

@Composable

fun Screen(mainViewModel: MainViewModel = viewModel()){

 mainViewModel.loadConcreteData()

 UpdateText()

}

@Composable

fun UpdateText(mainViewModel: MainViewModel = viewModel()) {

 val concreteData by mainViewModel.concreteData.

 observeAsState(ConcreteData("test", "test"))

 MessageView(text = concreteData.field1)

}

@Composable

fun MessageView(text: String) {

 Text(text = text)

}

MainActivity is now written using Jetpack Compose. It will trigger the data load when
the screen is created and then subscribe to LiveData from ViewModel, which will
update the text on the screen when the data is loaded.

Exploring the evolution of Android 29

Since we are using Hilt for dependency injection, we will need to define our external
dependencies in a module, as follows:

@Module

@InstallIn(SingletonComponent::class)

class ApplicationModule {

 @Singleton

 @Provides

 fun provideHttpClient(): OkHttpClient {

 return OkHttpClient

 .Builder()

 .readTimeout(15, TimeUnit.SECONDS)

 .connectTimeout(15, TimeUnit.SECONDS)

 .build()

 }

}

First, we must provide the OkHttp client, which is used to make the HTTP requests.

Next, we will need to provide the JSON serialization:

@Module

@InstallIn(SingletonComponent::class)

class ApplicationModule {

 …

 @Singleton

 @Provides

 fun provideConverterFactory(): MoshiConverterFactory =
MoshiConverterFactory.create()

}

We are using the Moshi library for JSON serialization, so we will have to provide a Factory
that will be used by Retrofit for JSON conversion.

Next, we need to provide a Retrofit object:

@Module

@InstallIn(SingletonComponent::class)

class ApplicationModule {

30 Getting Started with Clean Architecture

 …

 @Singleton

 @Provides

 fun provideRetrofit(

 okHttpClient: OkHttpClient,

 gsonConverterFactory: MoshiConverterFactory

): Retrofit {

 return Retrofit.Builder()

 .baseUrl("schema://host.com")

 .client(okHttpClient)

 .addConverterFactory(gsonConverterFactory)

 .build()

 }

}

The Retrofit object will need a base URL that will act as the host for our backend service,
OkHttpClient, and the JSON converter factory, which were provided earlier.

Finally, we will need to provide the template we defined previously:

@Module

@InstallIn(SingletonComponent::class)

class ApplicationModule {

 @Singleton

 @Provides

 fun provideConcreteDataService(retrofit: Retrofit):

 ConcreteDataService =

 retrofit.create(ConcreteDataService::class.java)

}

Here, we will use Retrofit to create an instance of ConcreteDataService that will be
injected into ConcreteDataRepository by Hilt.

Finally, we need to initialize Hilt in the Application class:

@HiltAndroidApp

class MyApplication : Application()

Enter clean architecture 31

This code represents a 10-year jump in time when it comes to Android development.
Going back to the questions we asked for the initial example in the Legacy analysis
section, we can see that we answered quite a few. If we want to introduce persistence into
the application, we now have a repository that can manage that for us. We also have a
lot of classes that can be individually unit tested because of the introduction of Hilt and
because we have delimited separated from the Android framework dependencies. We have
also introduced flows, which allow us to manipulate and handle the data in case we need
to connect to multiple sources and handle multi-threading more easily. The introduction
of Kotlin and Retrofit also allowed us to reduce the amount of code. If we were to make a
diagram of this, it would look as follows:

Figure 1.4 – A class diagram for a newer Android application

Here, we can see that the dependencies between the classes go from one direction to the
other, which is another positive. The introduction of Retrofit saved us a lot of hassle when
dealing with HTTP requests. But an issue remains with regards to how ConcreteData is
handled. We can see that it travels from ConcreteDataService into MainActivity.
Imagine if we wanted to provide the data from a different URL with a different POJO
representation. This means that all of the classes will have to be changed to accommodate
for this. This violates the single responsibility principle because the ConcreteData
class is used to serve multiple actors in our application. In the next section, we will try
to seek a solution to this problem and address ways to properly structure our classes and
components.

With that, we have explored the evolution of the Android platform and tools, what an
application may look like using the latest tools and libraries, and how this evolution solved
many problems developers had in the past. However, we still haven't solved all of them. In
the next section, we will talk about the concept of clean architecture and how we can use it
to make our application flexible and more adaptable to changes.

Enter clean architecture
In this section, we will discuss the concept of clean architecture, the problems it solves,
and how it can be applied to an Android application.

32 Getting Started with Clean Architecture

Architecture can be viewed as the high-level solution that's required to build a system
that can solve business and technical requirements. The goal should be to keep as many
options on the table for as long as we can. From an Android development perspective,
we've seen the platform grow a lot, and to balance the new changes that have been added
to the platform with the addition of new features for our application and its maintenance,
we will need to give our application a very good foundation so that it will adapt to
changes. A common approach to architecture in Android development was the layered
architecture, where apps would be split into three layers – the user interface, domain, and
data layers. The problem here was that the domain layer depended on the data layer, so
when the data layer changed, the domain layer needed to change too.

Clean architecture represents an integration of multiple types of architecture that provide
independence from frameworks, user interfaces, and databases, as well as being testable.
The shape resembles that of an onion, where dependencies go toward the inner layers.
These layers are as follows:

•	 Entity Layer: This layer is the innermost layer and is represented by objects that
hold data or business-critical functions.

•	 Use Case Layer: This layer implements the business logic of the system.

•	 Interface Adapter Layer: This layer is responsible for converting the data between
the frameworks and drivers and the use case. This will hold components such as
ViewModels and presenters, as well as various converters that are responsible for
converting network and persistence-related data into entities.

•	 Frameworks and Drivers Layer: This layer is the outermost layer and is comprised
of components such as activities, fragments, networking components, and
persistence components.

Let's consider a scenario: you've recently been hired by a start-up company as their first
Android engineer. You have been given a basic idea of what the app that you've been asked
to develop should do, but there isn't anything too concrete; the user interface has not been
finalized, the teams working on the backend are new themselves, and there isn't anything
too concrete on their side either. What you do know is a set of use cases that specify
what the app does: log into a system, load a list of tasks and add new tasks, delete tasks,
and edit existing tasks. The product owner tells you that you should work on something
while using mock data so that they can get a feel of the product and consult with the user
interface and user experience teams to discuss improvements and modifications.

Enter clean architecture 33

You are faced with a choice here: you can build the product that's been requested by the
product owner as fast as possible and then constantly refactor your code for each new
integration and the change in requirements, or you can take a little bit more time and
factor in the future changes that will come into your approach. If you were to take the
first approach, then you would find yourself in a situation where many developers found
themselves, which is to go back and change things properly. Let's assume you chose the
second approach. What would you need to do then? You can start decoupling your code
into separate layers. You know that the UI will change, so you will need to keep it isolated
so that when it is changed, the change will only be isolated to that particular section.
Often, the UI is referred to as the presentation layer.

Next, you want to decouple the business logic. This is something specific to processing
the data that your app will use. This is often done in the domain layer. Finally, you want
to decouple how the data is loaded and stored. This will be the part where you deal with
integrating libraries such as Room and Retrofit and it's often called the data layer. Because
the requirements aren't definitive yet, you also want to decouple how you want to handle
use cases so that if a use case changes, you can protect the others from that change. If you
were to rotate the class diagram from Figure 1.4, you would see a layered approach to
this example.

As we've mentioned previously, the fact that ConcreteData shows up in all the classes
in our example is not a good idea. This is because, at the end of the day, the fact that we
chose Retrofit and Moshi shouldn't impact the rest of the application. This is similar if it
was the opposite way around and the activity or ViewModel would've done the same.
At the end of the day, the way we choose to implement our UI or what networking
library we should use represent details. Our domain layer shouldn't be impacted by
any of these choices.

What we are doing here is establishing boundaries between the components in our
system so that a change in a component doesn't impact a change in another component.
In Android, even if we use the latest libraries and frameworks, we should still make sure
that our domain is still protected by changes in those frameworks. Going back to the
start-up example, and assuming you've chosen to decouple your components and pick the
appropriate boundaries, after many demos and iterations, your company decides to hire
additional developers to work on new, separate features. If those developers follow the
guidelines you've set up, they can work with a minimal level of overlap.

The recommendation from Android development documentation is to take advantage of
modules. One of the arguments is that it improves build speed because when you work
on a certain module, it won't rebuild the others when you build the application – it caches
them instead. Splitting your application into multiple modules serves another purpose.

34 Getting Started with Clean Architecture

Let's go back to the start-up. Things are going great and people love your product, so your
company decides to open your APIs for other businesses to integrate into their systems.
Your company also wants to provide an Android library so that it's easier for businesses
to access your APIs. You already have this logic integrated into your application; you
just need to export it. What features do you want to export? All? None? Do they want to
persist data locally? Do they want some of the UI or not? If your modules were split with
proper boundaries, then you would be able to accommodate all of those features. What we
want to do is have a system where we can easily plug things in and easily plug them out.

Transitioning our previous example to this approach, we would have something like this.
The ConcreteData class and ConcreteDataService would remain the same:

@JsonClass(generateAdapter = true)

data class ConcreteData(

 @Json(name = "field1") val field1: String,

 @Json(name = "field1") val field2: String

)

interface ConcreteDataService {

 @GET("/path")

 suspend fun getConcreteData(): ConcreteData

}

Now, we will need to isolate the Retrofit library and create the interface adapter for it. But
to do that, we will need to define our entity:

data class ConcreteEntity(

 val field1: String,

 val field2: String

)

It looks like it's a duplicate of ConcreteData, but this is a case of fake duplication. In
reality, as things evolve, the two classes may contain different data, so they will need to be
separated.

To isolate the Retrofit call, we need to invert the dependency of our repository. So, let's
create a new interface that will return ConcreteEntity:

interface ConcreteDataSource {

Enter clean architecture 35

 suspend fun getConcreteEntity(): ConcreteEntity

}

In our implementation, we will invoke the Retrofit service interface:

class ConcreteDataSourceImpl(private val concreteDataService:
ConcreteDataService) :

 ConcreteDataSource {

 override suspend fun getConcreteEntity():

 ConcreteEntity {

 val concreteData = concreteDataService.

 getConcreteData()

 return ConcreteEntity(concreteData.field1,

 concreteData.field2)

 }

}

Here, we have invoked ConcreteDataService and then converted the network model
into an entity.

Now, our repository will change into the following:

class ConcreteDataRepository @Inject constructor(private val
concreteDataSource: ConcreteDataSource) {

 suspend fun getConcreteEntity(): ConcreteEntity {

 return concreteDataSource.getConcreteEntity()

 }

ConcreteDataRepository will depend on ConcreteDataSource to avoid the
dependencies on the networking layer.

Now, we need to build the use case to retrieve ConcreteEntity:

class ConcreteDataUseCase @Inject constructor(private val
concreteDataRepository: ConcreteDataRepository) {

 fun getConcreteEntity(): Flow<ConcreteEntity> {

36 Getting Started with Clean Architecture

 return flow {

 val fooList = concreteDataRepository.

 getConcreteEntity()

 emit(fooList)

 }.flowOn(Dispatchers.IO)

 }

}

ConcreteDataUseCase will depend on ConcreteDataRepository to retrieve the
data and emit it using Kotlin flows.

Now, MainViewModel will need to be changed to invoke the use case. To do so, it will
use the field1 object from ConcreteEntity:

@HiltViewModel

class MainViewModel @Inject constructor(private val
concreteDataUseCase: ConcreteDataUseCase) :

 ViewModel() {

 private val _textData = MutableLiveData<String>()

 val textData: LiveData<String> get() = _textData

 fun loadConcreteData() {

 viewModelScope.launch {

 concreteDataUseCase.getConcreteEntity()

 .collect { data ->

 _textData.postValue(data.field1)

 }

 }

 }

}

MainViewModel will now depend on ConcreteDataUseCase and retrieve
ConcreteEntity, where it will extract field1. This will then be set in LiveData.

MainActivity will be updated to use the textData object from MainViewModel:

@AndroidEntryPoint

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

Enter clean architecture 37

 super.onCreate(savedInstanceState)

 setContent {

 Screen()

 }

 }

}

@Composable

fun Screen(mainViewModel: MainViewModel = viewModel()){

 mainViewModel.loadConcreteData()

 UpdateText()

}

@Composable

fun UpdateText(mainViewModel: MainViewModel = viewModel()) {

 val text by mainViewModel.textData.

 observeAsState("test")

 MessageView(text = text)

}

@Composable

fun MessageView(text: String) {

 Text(text = text)

}

With that, MainActivity has been updated to use LiveData, which emits a String
instead of a ConcreteData object.

Finally, the Hilt module will be updated as follows:

@Module

@InstallIn(SingletonComponent::class)

class ApplicationModule {

 …

 @Singleton

 @Provides

 fun provideHttpClient(): OkHttpClient {

38 Getting Started with Clean Architecture

 return OkHttpClient

 .Builder()

 .readTimeout(15, TimeUnit.SECONDS)

 .connectTimeout(15, TimeUnit.SECONDS)

 .build()

 }

 @Singleton

 @Provides

 fun provideConverterFactory(): MoshiConverterFactory =

 MoshiConverterFactory.create()

 @Singleton

 @Provides

 fun provideRetrofit(

 okHttpClient: OkHttpClient,

 gsonConverterFactory: MoshiConverterFactory

): Retrofit {

 return Retrofit.Builder()

 .baseUrl("schema://host.com")

 .client(okHttpClient)

 .addConverterFactory(gsonConverterFactory)

 .build()

 }

 @Singleton

 @Provides

 fun provideCurrencyService(retrofit: Retrofit):

 ConcreteDataService =

 retrofit.create(ConcreteDataService::class.java)

 @Singleton

 @Provides

 fun provideConcreteDataSource(concreteDataService:

 ConcreteDataService): ConcreteDataSource =

 ConcreteDataSourceImpl(concreteDataService)

}

Enter clean architecture 39

Here, we can see that ConcreteDataUseCase just invokes
ConcreteDataRepository, which just invokes ConcreteDataSource. You
may be wondering why this boilerplate is necessary. In this case, we have a bit of fake
duplication. As the code grows, ConcreteDataRepository may connect to other data
sources, and ConcreteDataUseCase may need to connect to multiple repositories to
combine the data. The same can be said about ConcreteData and ConcreteEntity.
Another benefit of this approach is the imposition of more rigor when it comes to
development, and it creates consistency.

Let's look at the following diagram and see how it compares to Figure 1.4:

Figure 1.5 – Clean architecture

If we look at the top row, we will see the use case and the entity. We can also see that the
dependencies go from the classes at the bottom toward the classes at the top, similar to
how the dependencies go from the outer layers toward the inner layers here. A difference
you may have noticed is that our example doesn't mention the usage of modules. Later in
this book, we will explore how to apply clean architecture to multiple modules and how to
manage them.

40 Getting Started with Clean Architecture

We are now back in the start-up, and you started working on the application, where you
have defined a few entities and use cases and have put a simple UI in place. The product
owner has asked you to deliver a demo with some mock data for tomorrow. What can
you do? You can create a new implementation of your data source and plug in some mock
objects that you can use to satisfy the conditions for the demo. You show the demo of the
application and you receive some feedback about your UI. This means you can change
your activities and fragments to render the data appropriately, and this won't impact
any of the other components. What would happen if the use case were to change? In
that situation, this would propagate into the rest of the other layers. This depends on the
change, though, but this scenario is to be expected in this situation.

Summary
In this chapter, we explored what an Android app used to look like and all the problems
developers would face at the time. We've looked at some of the most important software
design principles, such as SOLID, to get a better understanding of how to improve our
code and how these principles helped the Android platform evolve. We also looked
at the adoption of a new programming language that came with the introduction
of new software paradigms, the addition of event-based libraries and frameworks,
the introduction of architecture components to help developers write more testable
applications, and a new way to build user interfaces. Finally, we introduced clean
architecture, which helps us build maintainable, testable, and more independent
applications. We looked at all of these changes through a small example, where we
saw them transition from what they may have looked like in 2010 to what they may look
like now.

In the next chapter, we will deep dive into the libraries that are required for loading,
storing, and managing data on Android. We will combine them to build an app using
clean architecture.

2
Deep Diving into

Data Sources
In this chapter, we will study some of the popular libraries and frameworks used for
retrieving and managing data on Android and how to do this without blocking the
main thread of an application. We will start by going over how multithreading should be
handled in an Android application and the available technologies we now have to easily
handle this. We will then move on to implement loading data from the internet using
libraries such as Retrofit and OkHttp, after which we will look at how we can persist data
on a device using libraries such as Room and DataStore.

In this chapter, we will cover the following main topics:

•	 Understanding Kotlin coroutines and flows

•	 Using OkHttp and Retrofit for networking

•	 Using the Room library for data persistence

•	 Understanding and using the DataStore library

By the end of this chapter, you will have become familiar with how we can load, manage,
and persist data in an Android application.

42 Deep Diving into Data Sources

Technical requirements
This chapter has the following hardware and software requirements:

•	 Android Studio Arctic Fox 2020.3.1 Patch 3

The code files for this chapter can be found here:

https://github.com/PacktPublishing/Clean-Android-Architecture/
tree/main/Chapter2

Check out the following video to see the Code in Action: https://bit.ly/38uecPi

Understanding Kotlin coroutines and Flows
In this section, we will look at how threading works in the Android ecosystem and what
applications must do to ensure that long-running operations do not block the user from
using an application. We will then look at what available options we have available to
execute operations in the background, with a focus on coroutines. Finally, we will look
over Kotlin flows, which we can use to handle asynchronous work using a reactive and
functional approach.

Android applications normally run in a single process on a user's device. When the
operating system starts the application's process, it will allocate memory resources for
the process to be executed. This process, when started, will have one thread of execution
running within. This thread is referred to as the "main thread" or "user interface (UI)
thread". In Android, this concept is very important because it is the thread that deals with
user interaction. This imposes certain limitations for developers when dealing with it, as
outlined here:

•	 The main thread must not be blocked by long-running or input/output (I/O)
operations.

•	 All updates to the UI must be done on the main thread.

The idea is that the user should still be able to interact with an application as much as
possible even if the application is doing some work. Every time we want to load and save
data from or to the internet, local storage, content providers, and so on, we should use
another thread or use multiple threads. The way the device's processor deals with multiple
threads is by assigning a core for each thread. When there are more threads than cores, it
will jump back and forth between every single instruction from each thread. Having too
many threads being executed simultaneously will end up creating a bad user experience
(UX) because the processor will now need to jump between the main thread and the rest
of the threads being executed at the same time, so we will need to be mindful of how
many threads are being executed concurrently.

Understanding Kotlin coroutines and Flows 43

In Java, a thread can be created using the Thread class; however, creating a new thread
for every asynchronous operation is a very resource-expensive operation. Java also offers
the concept of ThreadPool or Executor. These typically manage fixed a collection
of threads that will be reused for different operations. Because of the Android restriction
regarding updating the UI on the main thread, classes such as Handler and Looper
were introduced, whereby you can submit the result of an operation performed on
a background thread back on the main thread. An example of this is provided here:

class MyClass {

 fun asyncSum(a: Int, b: Int, callback: (Int) -> Unit) {

 val handler = Handler(Looper.getMainLooper())

 Thread(Runnable {

 val result = a + b

 handler.post(Runnable {

 callback(result)

 })

 }).start()

 }

}

In the preceding code snippet, the sum of two numbers will be performed on a new
thread, and the result will then be posted back using the Handler object that is
connected to the main Looper object, which itself will loop the main thread.

The repeated usage of Handler and Looper gave birth to AsyncTask, which offers the
possibility of moving the necessary operations on a background thread and receiving the
result on the main thread. AsyncTask worked with the same principle as the preceding
example, only instead of creating a new thread for every new operation, it would by
default use the same thread (although this later became configurable), which means that if
two AsyncTask instances were executed at the same time, one would wait after the other.
An example of the same sum operations might look like this:

 fun asyncSum(a: Int, b: Int, callback: (Int) -> Unit) {

 object : AsyncTask<Nothing, Nothing, Int>() {

 override fun doInBackground(vararg params:

 Nothing?): Int {

 return a+b

 }

44 Deep Diving into Data Sources

 override fun onPostExecute(result: Int) {

 super.onPostExecute(result)

 callback(result)

 }

 }.execute()

 }

In the preceding example, the sum is done in the doInBackground method, which is
executed on a separate thread, and the onPostExecute method would be executed on
the main thread.

Let's now imagine that we want to chain these sums and apply them multiple times, as
follows:

 fun asyncComplicatedSum(a: Int, b: Int, c: Int) {

 asyncSum(a, b) { tempSum ->

 asyncSum(tempSum, c) { finalSum ->

 Log.d(this.javaClass.name, "Final sum

 $finalSum")

 }

 }

 }

In the preceding example, we try to sum two numbers and add the result to number c. As
you can see, we need to use the callback and wait for a and b to finish and then apply the
same function to the result of a+b and the number c.

Let's imagine what an application might look like when having to deal with loading data
from multiple data sources, merging them together, handling errors, and stopping the
asynchronous execution if the user leaves the current activity or fragment. The RxJava
library tries to tackle all these problems through an event-driven approach. It introduces
the concepts of streams and flows of data that can be observed, transformed, merged with
other data streams, and executed on different threads. The sum of two numbers in RxJava
might look something like this:

fun asyncSum(a: Int, b: Int): Single<Int> {

 return Single.create<Int> {

 it.onSuccess(a + b)

Understanding Kotlin coroutines and Flows 45

 }.subscribeOn(Schedulers.io())

 .observeOn(AndroidSchedulers.mainThread())

 }

In the preceding example, we create a Single instance, which is a stream that emits
only one value (for emitting multiple values, we have the Flowable and Observable
options). The value emitted is the sum of the two numbers. The usage of subscribeOn is
for executing the upstream (the sum) on an I/O thread managed by RxJava internally, and
the usage of observeOn is to have everything downstream (all the commands that will
follow) to get the result on the main thread.

If we want to chain multiple sums, then we would have something like this:

fun asyncComplicatedSum(a: Int, b: Int, c: Int) {

 val disposable = asyncSum(a, b)

 .flatMap {

 asyncSum(it, c)

 }

 .subscribe ({

 Log.d(this.javaClass.name, "Final sum $it")

 },{

 Log.d(this.javaClass.name, "Something went

 wrong")

 })

 }

In the preceding example, the sum of a and b is executed, then through the flatMap
operator, we add c to that result. The usage of subscribe method is for triggering
sums and listening for the results. This is because the Single instance used is a cold
observable; it will only be executed only when subscribe is called. There is also the
concept of hot observables, which will emit whether there are subscribers or not. The
result of the subscribe operator will return a Disposable instance that offers a
dispose method that can be called when we want to stop listening for data from the
stream. This is useful in situations where our activities and fragments are destroyed, and
we don't want to update our UI to avoid context leaks.

46 Deep Diving into Data Sources

Kotlin coroutines
So far, we have analyzed technologies that revolve around the Java and Android
frameworks. With the adoption of Kotlin, other technologies have emerged that deal
with multithreading and are Kotlin-specific. One of these is the concept of coroutines.
Coroutines simplify the way we write asynchronous code. Instead of dealing with
callbacks, coroutines introduce the concept of scopes where we can specify which
threads our blocks of code will execute in. The scopes can also connect to lifecycle-aware
components that help us unsubscribe from the results of asynchronous work when our
lifecycle-aware components terminate. Let's look at the following example of coroutines
for the same sum:

 suspend fun asyncSum(a: Int, b: Int): Int {

 return withContext(Dispatchers.IO) {

 a + b

 }

 }

In the preceding example, the withContext method will execute the block of code
inside it in the threads managed by the I/O dispatcher. The number of threads associated
with this dispatcher is managed internally by the Kotlin framework and is associated
with the number of cores the processor of the device has. This often means that we don't
have to worry about the performance of our applications when multiple asynchronous
operations are executed concurrently. Another interesting thing to note in the example is
the usage of the suspend keyword. This is to alert the caller of this method that it will be
executed using coroutines on a separate thread.

Now, let's see what things will look like when we want to invoke this method. Have a look
at the following code snippet:

class MyClass : CoroutineScope {

 override val coroutineContext: CoroutineContext

 get() = Dispatchers.Main + job

 private lateinit var job: Job

 fun asyncComplicatedSum(a: Int, b: Int, c: Int) {

 launch {

 try {

 val tempSum = asyncSum(a, b)

 val finalSum = asyncSum(tempSum, c)

Understanding Kotlin coroutines and Flows 47

 Log.d(this.javaClass.name, "Final sum

 $finalSum")

 } catch (e: Exception) {

 Log.d(this.javaClass.name, "Something went

 wrong")

 }

 }

 }

 fun create() {

 job = Job()

 }

 fun destroy() {

 job.cancel()

 }

}

In asyncComplicatedSum, we use the launch method. This method is associated
with the CoroutineContext object defined in this class. The context is defined using
the Main dispatcher combined with the Job object that will be associated with the
lifecycle of this object. If the destroy method is called while we are waiting for the result
of the sum, then the execution of the sum will stop and we will stop getting the result of
the sum. The code will execute each of the sums on the I/O thread and then execute log
statements on the main thread if the job is still alive.

In Android, we already have a few CoroutineScope objects already defined
and associated with our lifecycle-aware classes. One that will be relevant to us is
the one defined for ViewModels. This can be found in the org.jetbrains.
kotlinx:kotlinx-coroutines-android library and will look something like this:

class MyViewModel: ViewModel() {

 init {

 viewModelScope.launch { }

 }

}

48 Deep Diving into Data Sources

viewModelScope is a Kotlin extension created for ViewModel instances that will
execute if the ViewModel instance is alive. If onCleared is called on the ViewModel
instance, then it will stop listening to the remaining code to be executed in the
launch block.

In this section, we've analyzed how Kotlin coroutines work and how we can use them to
handle asynchronous operations in an Android application. In the next section, we will
create an Android application that will use Kotlin coroutines for a simple asynchronous
operation.

Exercise 02.01 – Using Kotlin coroutines
Create an application that will display two input fields, one text field, and a button. The
input fields will be limited to numbers only, and when the user presses the button, then
the text field will display the sum of the two numbers after 5 seconds. The sum and
waiting will be implemented using coroutines.

To complete the exercise, you will need to build the following:

•	 A class that will perform the addition of the two numbers

•	 A ViewModel class that will invoke the addition

•	 The UI using Compose that will use the following function:

@Composable

fun Calculator(

 a: String,

 onAChanged: (String) -> Unit,

 b: String,

 onBChanged: (String) -> Unit,

 result: String,

 onButtonClick: () -> Unit

) {

 Column(modifier = Modifier.padding(16.dp)) {

 OutlinedTextField(

 value = a,

 onValueChange = onAChanged,

 keyboardOptions = KeyboardOptions

 (keyboardType = KeyboardType.Number),

 label = { Text("a") }

)

Understanding Kotlin coroutines and Flows 49

 OutlinedTextField(

 value = b,

 onValueChange = onBChanged,

 keyboardOptions = KeyboardOptions

 (keyboardType = KeyboardType.Number),

 label = { Text("b") }

)

 Text(text = result)

 Button(onClick = onButtonClick) {

 Text(text = "Calculate")

 }

 }

}

Follow these steps to complete the exercise:

1.	 Create a new project in Android Studio using an Empty Compose Activity.
2.	 At the top level of the build.gradle file, define the Compose library version

as follows:

buildscript {

 ext {

 compose_version = '1.0.5'

 }

 …

}

3.	 In the app/build.gradle file, we need to add the following dependencies:

dependencies {

 implementation 'androidx.core:core-ktx:1.7.0'

 implementation 'androidx.appcompat:appcompat:1.4.0'

 implementation 'com.google.android.
material:material:1.4.0'

 implementation "androidx.compose.ui:ui:$compose_
version"

 implementation "androidx.compose.
material:material:$compose_version"

 implementation "androidx.compose.ui:ui-tooling-

50 Deep Diving into Data Sources

preview:$compose_version"

 implementation 'androidx.lifecycle:lifecycle-runtime-
ktx:2.4.0'

 implementation 'androidx.activity:activity-
compose:1.4.0'

 implementation 'org.jetbrains.kotlinx:kotlinx-
coroutines-android:1.5.0'

 implementation "androidx.lifecycle:lifecycle-
viewmodel-ktx:2.4.0"

 implementation "androidx.lifecycle:lifecycle-
viewmodel-compose:2.4.0"

 testImplementation 'junit:junit:4.13.2'

 androidTestImplementation 'androidx.test.
ext:junit:1.1.3'

 androidTestImplementation 'androidx.test.
espresso:espresso-core:3.4.0'

 androidTestImplementation "androidx.compose.ui:ui-
test-junit4:$compose_version"

 testImplementation "org.jetbrains.kotlinx:kotlinx-
coroutines-test:1.5.0"

 debugImplementation "androidx.compose.ui:ui-
tooling:$compose_version"

}

4.	 Start by creating a NumberAdder class and define an add operation and a delay,
as follows:

private const val DELAY = 5000

class NumberAdder(

 private val dispatcher: CoroutineDispatcher =

 Dispatchers.IO,

 private val delay: Int = DELAY

) {

 suspend fun add(a: Int, b: Int): Int {

 return withContext(dispatcher) {

 delay(delay.toLong())

 a + b

Understanding Kotlin coroutines and Flows 51

 }

 }

}

In this class, we will add our 5-second delay before performing the sum of
the two numbers. This is to highlight the asynchronous operation more.
CoroutineDispatcher and the amount we want to delay by will be injected
through the constructor. This is because we want to unit-test this class.

5.	 Next, we will need to unit-test this class. Before we write the test, create a test rule so
that we can reuse it for coroutines, as follows:

class DispatcherTestRule : TestRule {

 @ExperimentalCoroutinesApi

 val testDispatcher = TestCoroutineDispatcher()

 @ExperimentalCoroutinesApi

 override fun apply(base: Statement?, description:

 Description?): Statement {

 try {

 Dispatchers.setMain(testDispatcher)

 base?.evaluate()

 } catch (e: Exception) {

 } finally {

 Dispatchers.resetMain()

 testDispatcher.cleanupTestCoroutines()

 }

 return base!!

 }

}

In this class, we create a TestCoroutineDispatcher instance that will
later be injected into the unit test so that the test can execute the sum in a
synchronous way. @ExperimentalCoroutinesApi suggests that the usage of
TestCoroutineDispatcher is still in an experimental state and will be moved
to a stable version in the future.

52 Deep Diving into Data Sources

6.	 Now, write the unit test for the class, in the form of NumberAdderTest, as
follows:

class NumberAdderTest {

 @get:Rule

 val dispatcherTestRule = DispatcherTestRule()

 @ExperimentalCoroutinesApi

 @Test

 fun testAdd() = runBlockingTest {

 val adder = NumberAdder(dispatcherTestRule.

 testDispatcher, 0)

 assertEquals(5, adder.add(1, 4))

 }

}

Here, we inject the testDispatcher object we created in
DispatcherTestRule into NumberAdder, and we then invoke the add
function. The entire test is executed in a special CoroutineScope block called
runBlockingTest, that will ensure all the coroutines launched must complete.

7.	 Next, go ahead and create a ViewModel class, like this:

class MainViewModel(private val adder: NumberAdder =
NumberAdder()) : ViewModel() {

 var resultState by mutableStateOf("0")

 private set

 fun add(a: String, b: String) {

 viewModelScope.launch {

 val result = adder.add(a.toInt(),

 b.toInt())

 resultState = result.toString()

 }

 }

}

Understanding Kotlin coroutines and Flows 53

Here, we use a Compose state that will retain the result of the addition, and a
method that will trigger the addition into viewModelScope.

8.	 After the ViewModel class has been created, go ahead and create an activity class,
as follows:

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 Exercise201Theme {

 Surface {

 Screen()

 }

 }

 }

 }

}

Here, we initialize our activity with the content. Exercise201Theme should be
replaced with the theme generated by Android Studio when the project was created.
Typically, this should be in a Theme file and should be a @Composable function
that has the application name followed by the Theme suffix. If that is not available,
you can use MaterialTheme instead for the purpose of the exercise.

9.	 Next, create a Screen function, as follows:

@Composable

fun Screen(viewModel: MainViewModel = viewModel()) {

 var a by remember { mutableStateOf("") }

 var b by remember { mutableStateOf("") }

 Calculator(

 a = a,

 onAChanged = {

 a = it

 },

 b = b,

 onBChanged = {

 b = it

 },

54 Deep Diving into Data Sources

 result = viewModel.resultState,

 onButtonClick = {

 viewModel.add(a, b)

 })

}

In this method, we define variables for our text fields, then we pass the result
of the addition of the numbers from the ViewModel, and finally, we invoke the
ViewModel to perform the addition.

10.	 And finally, add the Calculator function from the exercise definition to the
MainActivity file.

If we run the preceding example, we should see our UI elements, and after inserting the
numbers and clicking the button, we will get our result. One thing to notice is that the
user will be able to interact with the UI while the add method is executed, and clicking
multiple times for different numbers will get the results 5 seconds after each button press.

Using coroutines can improve the quality of an Android application, especially when
combined with Android extensions for the ViewModel class and lifecycle-aware
components. Coroutines simplify the code we write for asynchronous operations, and
the addition of the suspend keyword can enforce more rigor when dealing with these
operations.

Kotlin Flows
Coroutines offer a good solution for dealing with asynchronous operations; however, they
do not offer a good ability to handle multiple streams of data in the same way RxJava does.
Flows represent an extension to coroutines, which is meant to solve this problem. When
dealing with flows, there are three entities to consider, as outlined here:

•	 Producer: This entity is responsible for emitting the data.

•	 Intermediary: This entity deals with the transformation or manipulation of
the data.

•	 Consumer: This entity consumes the data in the stream.

Let's look at the following example of adding two numbers and how it might look like
using Kotlin flows:

fun asyncSum(a: Int, b: Int): Flow<Int> {

 return flow {

 this.emit(a + b)

Understanding Kotlin coroutines and Flows 55

 }.flowOn(Dispatchers.IO)

 }

Here, we create a Flow object that will emit the result of a + b on a stream. The flowOn
method will move the execution of the upstream on an I/O thread. Here, we note the
similarity to RxJava in the concept of how Flows work, but we also notice that it's an
extension of coroutines because of the use of Dispatchers. Let's now look at how flows
look on the consumer side, as follows:

class MyClass : CoroutineScope {

 override val coroutineContext: CoroutineContext

 get() = Dispatchers.Main + job

 private lateinit var job: Job

 @FlowPreview

 fun asyncComplicatedSum(a: Int, b: Int, c: Int) {

 launch {

 asyncSum(a, b)

 .flatMapConcat {

 asyncSum(it, c)

 }

 .catch {

 Log.d(this.javaClass.name, "Something

 went wrong")

 }

 .collect {

 Log.d(this.javaClass.name, "Final sum

 $it")

 }

 }

 }

}

Here, we also notice similarities to RxJava—that is, when we try to manipulate the stream
to perform the addition to number c and when it comes to error handling due to the
catch method. The collect method, however, is closer to coroutines, and it requires a
CoroutineScope to be used or to declare the calling method as a suspend one.

56 Deep Diving into Data Sources

Flows offer a couple of specialized classes for particular use cases: StateFlow and
SharedFlow. The StateFlow class is useful because it will offer subscribers the last
value stored when they subscribe, like how LiveData works. Flows can also be cold and
hot, and SharedFlow is a specialized implementation of a hot flow. SharedFlow will
emit items if it is kept in memory if there are any consumers or not. When a consumer
subscribes to SharedFlow, it will also emit the last value stored to the consumer, as
with StateFlow.

In this section, we have looked at Kotlin flows and the benefits they provide when it comes
to handling asynchronous operations. Next, we will look at how we can use Kotlin flows in
an Android application through a simple exercise.

Exercise 02.02 – Using Kotlin Flows
Modify the application from Exercise 02.01 so that the addition of the two numbers will
return a Flow instead of a suspended function.

To complete the exercise, you will need to do the following:

•	 Rewrite the add function in NumberAdder to return a Flow.

•	 Change how the ViewModel invokes the add function.

Follow these steps to complete the exercise:

1.	 Modify the add function in NumberAdder to return a Flow, as follows:

private const val DELAY = 5000

class NumberAdder(

 private val dispatcher: CoroutineDispatcher =

 Dispatchers.IO,

 private val delay: Int = DELAY

) {

 suspend fun add(a: Int, b: Int): Flow<Int> {

 return flow {

 emit(a + b)

 }.onEach {

 delay(delay.toLong())

 }.flowOn(dispatcher)

 }

}

Understanding Kotlin coroutines and Flows 57

Here, we create a new Flow where we emit the sum of a and b, after which
we put a delay on each item emitted in the stream, and finally, we specify the
CoroutineDispatcher instance we wish to execute the sum on.

2.	 Next, let's modify the unit test for the sum, as follows:

class NumberAdderTest {

 @get:Rule

 val dispatcherTestRule = DispatcherTestRule()

 @ExperimentalCoroutinesApi

 @Test

 fun testAdd() = runBlockingTest {

 val adder = NumberAdder

 (dispatcherTestRule.testDispatcher, 0)

 val result = adder.add(1, 4).first()

 assertEquals(5, result)

 }

}

Because the add method returns a Flow object, we must now find the first item
emitted in the flow and assert the value of that item against our expected result.

3.	 Modify the MainViewModel class to consume the add operation, as follows:

class MainViewModel(private val adder: NumberAdder =
NumberAdder()) : ViewModel() {

 var resultState by mutableStateOf("0")

 private set

 fun add(a: String, b: String) {

 viewModelScope.launch {

 adder.add(a.toInt(), b.toInt())

 .collect {

 resultState = it.toString()

 }

 }

 }

}

58 Deep Diving into Data Sources

Here, the add method will still use the same CoroutineScope instance to launch
the add method, which will now use the collect method to get the result of
the sum.

If we launch the application after following the steps from the exercise, the behavior
will be the same as for Exercise 02.01, and we can see how Kotlin flows extend the
functionality of coroutines by introducing concepts from RxJava to simplify how we can
handle multiple streams of data.

In this section, we've seen how handling asynchronous operations has evolved over time
and how much our applications benefit from concepts such as coroutines and flows that
provide management for background threads, simplify how we execute asynchronous
operations, manage multiple streams of data, and can connect to the lifecycle of Android
components. In the following section, we will look at tools we can use to fetch data from
the network and how they can be integrated with Kotlin coroutines and flows.

Using OkHttp and Retrofit for networking
In this section, we will look at how we can use the Retrofit library to perform networking
operations and the benefits it provides.

Many Android applications require the internet to access data stored on various servers.
Often, this is done through the HyperText Transfer Protocol (HTTP) protocol in which
data is exchanged between the applications and the servers. The data is often represented
in JavaScript Object Notation (JSON) format. In the past, these types of exchanges
were implemented either with HttpURLConnection or Apache HttpClient. Working
with either of these components meant that developers would need to manually handle
the conversion from plain old Java objects (POJOs) to JSON, handle various network
configurations, and deal with backward compatibility.

The OkHttp library will address some of these issues through an OkHttpClient class
that will handle various network configurations and that provides other features such as
caching. The Retrofit library, which can be placed on top of the OkHttp library, is meant
to ensure type safety when dealing with various data formats. It's very configurable and
allows the possibility to plug in various converter libraries for POJO-to-JSON conversion
or Extensible Markup Language (XML) or other types of formats.

In order to add Retrofit and OkHttp to the project, we will add the following dependencies
to the build.gradle file:

dependencies {

 …

 implementation "com.squareup.okhttp3:okhttp:4.9.0"

Using OkHttp and Retrofit for networking 59

 implementation "com.squareup.retrofit2:retrofit:2.9.0"

 …

}

Next, we will need to determine which converters we will need to use for the data. Because
JSON is a common format, we will use a JSON converter and the Moshi library to do so,
so we will need to add dependencies to these two libraries, as follows:

dependencies {

 …

 implementation "com.squareup.okhttp3:okhttp:4.9.0"

 implementation "com.squareup.retrofit2:retrofit:2.9.0"

 implementation "com.squareup.retrofit2:converter-
moshi:2.9.0"

 implementation "com.squareup.moshi:moshi:1.13.0"

 …

}

Here, the Moshi library will be responsible for converting POJOs into JSON, and the
converter library will plug into the Retrofit library and trigger this conversion when data
is exchanged between the Android application and the server.

Let's assume we will need to fetch data from a server in a JSON format. We can use the
https://jsonplaceholder.typicode.com/ service as an example. If we want to
fetch a list of users, we can use the https://jsonplaceholder.typicode.com/
users Uniform Resource Locator (URL). A user's JSON representation looks like this:

{

"id": 1,

 "name": "Leanne Graham",

 "username": "Bret",

 "email": "Sincere@april.biz",

 "address": {

 "street": "Kulas Light",

 "suite": "Apt. 556",

 "city": "Gwenborough",

 "zipcode": "92998-3874",

 "geo": {

 "lat": "-37.3159",

60 Deep Diving into Data Sources

 "lng": "81.1496"

 }

 },

 "phone": "1-770-736-8031 x56442",

 "website": "hildegard.org",

 "company": {

 "name": "Romaguera-Crona",

 "catchPhrase": "Multi-layered client-server neural-

 net",

 "bs": "harness real-time e-markets"

 }

We can see in the JSON representation that the user has an id, a username, an
email value, and so on. In Kotlin, we can create a representation of this, and we can
exclude properties that the application doesn't need, such as email, address, phone,
website, and company, as follows:

 data class User(

 @Json(name = "id") val id: Long,

 @Json(name = "name") val name: String,

 @Json(name = "username") val username: String

)

Here, we are using Moshi to map the property from a JSON to a Kotlin type, and we only
kept three of the fields present in the initial JSON. Now, let's look at how we can initialize
our networking libraries. The code to accomplish this is shown in the following snippet:

 fun createOkHttpClient() = OkHttpClient

 .Builder()

 .readTimeout(15, TimeUnit.SECONDS)

 .connectTimeout(15, TimeUnit.SECONDS)

 .build()

For OkHttp, we use a Builder method to create a new OkHttpClient instance,
and we can provide certain configurations for it. We will now use the OkHttpClient
instance created previously to create a Retrofit instance, as follows:

fun createRetrofit(

 okHttpClient: OkHttpClient

): Retrofit {

Using OkHttp and Retrofit for networking 61

 return Retrofit.Builder()

 .baseUrl("https://jsonplaceholder.typicode.com/")

 .client(okHttpClient)

 .build()

 }

Here, we create a new Retrofit instance that will have the base URL set to https://
jsonplaceholder.typicode.com/. Changing the base URL comes in handy
during development. Many teams will have a development URL used internally to test
the development and integration of features and will have a production URL where the
actual user data is set. Now, we will need to connect the Moshi JSON serialization to the
Retrofit instance, as follows:

Fun createConverterFactory(): MoshiConverterFactory =
MoshiConverterFactory.create()

Here, we create MoshiConverterFactory, which is a Retrofit converter designed to
connect Retrofit to the JSON serialization done by Moshi. We will now need to change
our Retrofit initialization to what follows:

fun createRetrofit(

 okHttpClient: OkHttpClient,

 gsonConverterFactory: MoshiConverterFactory

): Retrofit {

 return Retrofit.Builder()

.baseUrl("https://jsonplaceholder.typicode.com/")

 .client(okHttpClient)

 .addConverterFactory(gsonConverterFactory)

 .build()

 }

Here, we add the MoshiConverterFactory converter to the Retrofit Builder
method to allow the two components to work together. Finally, we can create a Retrofit
interface that will have templates for the HTTP request, as follows:

interface UserService {

 @GET("/users")

 fun getUsers(): Call<List<User>>

62 Deep Diving into Data Sources

 @GET("/users/{userId}")

 fun getUser(@Path("userId") userId: Int):

 Call<User>

 @POST("/users")

 fun createUser(@Body user: User): Call<User>

 @PUT("/users/{userId}")

 fun updateUser(@Path("userId") userId: Int, @Body

 user: User): Call<User>

 }

This interface contains an example of various methods for getting, creating, updating,
and deleting data on servers. Note that the return type of these methods is a Call object
that offers the ability to execute HTTP requests synchronously or asynchronously. One
of the things that makes Retrofit more appealing to developers is the fact that it can be
integrated with other asynchronous libraries such as RxJava and coroutines. Translating
the preceding example to coroutines will look something like this:

interface UserService {

 @GET("/users")

 suspend fun getUsers(): List<User>

 @GET("/users/{userId}")

 suspend fun getUser(@Path("userId") userId: Int):

 User

 @POST("/users")

 suspend fun createUser(@Body user: User): User

 @PUT("/users/{userId}")

 suspend fun updateUser(@Path("userId") userId: Int,

 @Body user: User): User

 }

Using OkHttp and Retrofit for networking 63

In the preceding example, we add the suspend keyword to each method and we
remove the dependency to the Call class. This allows us to execute these methods using
coroutines. To create an instance of this class, we need to do the following:

fun createUserService(retrofit: Retrofit) = retrofit.
create(UserService::class.java)

Here, we use the Retrofit instance created previously to create a new instance of
UserService.

In this section, we have analyzed how we can use OkHttp and Retrofit to load data from
the internet and the benefits these libraries provide, especially when combined with Kotlin
coroutines and flows. In the next section, we will create an Android application that will
use these libraries to fetch and display data on the UI.

Exercise 02.03 – Using OkHttp and Retrofit
Create an Android application that connects to https://jsonplaceholder.
typicode.com/ and displays a list of users using OkHttp, Retrofit, and Moshi. For each
user, we will display the name, username, and email.

To complete the exercise, you will need to do the following:

•	 Create a User data class that will map the JSON representation of the user.

•	 Create a UserService class that will have a method to retrieve a list of users.

•	 Create a ViewModel class that will use UserService to retrieve a list of users.

•	 Implement an Activity class that will display a list of users.

A UI list will be created using the following method:

@Composable

fun UserList(users: List<User>) {

 LazyColumn(modifier = Modifier.padding(16.dp)) {

 items(users) {

 Column(modifier = Modifier.padding(16.dp)) {

 Text(text = it.name)

 Text(text = it.username)

 Text(text = it.email)

 }

 }

64 Deep Diving into Data Sources

 }

}

Follow these steps to complete the exercise:

1.	 Create an Android application with an Empty Compose Activity.
2.	 At the top level of the build.gradle file, define the Compose library version, as

follows:

buildscript {

 ext {

 compose_version = '1.0.5'

 }

 …

}

3.	 In the app/build.gradle file, add the following dependencies:

dependencies {

 implementation 'androidx.core:core-ktx:1.7.0'

 implementation 'androidx.appcompat:appcompat:1.4.0'

 implementation 'com.google.android.
material:material:1.4.0'

 implementation "androidx.compose.ui:ui:$compose_
version"

 implementation "androidx.compose.
material:material:$compose_version"

 implementation "androidx.compose.ui:ui-tooling-
preview:$compose_version"

 implementation 'androidx.lifecycle:lifecycle-runtime-
ktx:2.4.0'

 implementation 'androidx.activity:activity-
compose:1.4.0'

 implementation 'org.jetbrains.kotlinx:kotlinx-
coroutines-android:1.5.0'

 implementation "androidx.lifecycle:lifecycle-
viewmodel-ktx:2.4.0"

 implementation "androidx.lifecycle:lifecycle-
viewmodel-compose:2.4.0"

 implementation "com.squareup.okhttp3:okhttp:4.9.0"

Using OkHttp and Retrofit for networking 65

 implementation "com.squareup.retrofit2:retrofit:2.9.0"

 implementation "com.squareup.retrofit2:converter-
moshi:2.9.0"

 implementation "com.squareup.moshi:moshi:1.13.0"

 implementation "com.squareup.moshi:moshi-
kotlin:1.13.0"

 testImplementation 'junit:junit:4.13.2'

 androidTestImplementation 'androidx.test.
ext:junit:1.1.3'

 androidTestImplementation 'androidx.test.
espresso:espresso-core:3.4.0'

 androidTestImplementation "androidx.compose.ui:ui-
test-junit4:$compose_version"

 testImplementation "org.jetbrains.kotlinx:kotlinx-
coroutines-test:1.5.0"

 debugImplementation "androidx.compose.ui:ui-
tooling:$compose_version"

}

4.	 Now, add a permission for internet access to the AndroidManifest.xml file, as
follows:

<uses-permission android:name="android.permission.
INTERNET"/>

5.	 Now move on and create a class that will hold the user information, as follows:

@JsonClass(generateAdapter = true)

data class User(

 @Json(name = "id") val id: Long,

 @Json(name = "name") val name: String,

 @Json(name = "username") val username: String,

 @Json(name = "email") val email: String

)

Here, we will hold the id field, which is generally a relevant field for distinguishing
between different users and fields that we are required to display.

6.	 Next, create a UserService class that will fetch the user data, as follows:

interface UserService {

66 Deep Diving into Data Sources

 @GET("/users")

 suspend fun getUsers(): List<User>

}

Here, we will only have one method that will get a list of users from the /users
path.

7.	 Now, we initialize the networking objects. Because we aren't using any dependency
injection (DI) frameworks and we only need to create one instance of each, we will
hold the objects in the MainApplication class, as follows:

class MyApplication : Application() {

 companion object {

 lateinit var userService: UserService

 }

 override fun onCreate() {

 super.onCreate()

 val okHttpClient = OkHttpClient

 .Builder()

 .readTimeout(15, TimeUnit.SECONDS)

 .connectTimeout(15, TimeUnit.SECONDS)

 .build()

 val moshi = Moshi.Builder().

 add(KotlinJsonAdapterFactory()).build()

 val retrofit = Retrofit.Builder()

 .baseUrl("https://jsonplaceholder.typicode.
com/")

 .client(okHttpClient)

 .addConverterFactory(MoshiConverterFactory.
create(moshi))

 .build()

 userService = retrofit.create(UserService::class.
java)

 }

}

Using OkHttp and Retrofit for networking 67

Here, we are initializing our networking libraries and the UserService object.
Currently, we are holding a static reference to this object, which is not a good idea
in general. Normally, we would rely on DI frameworks to manage these networking
dependencies.

8.	 In the AndroidManifest.xml file, add the following code:

 <application

 …

 android:name=".MyApplication"

 …>

Given that we are inheriting from the Application class, we will need to add this
class to the manifest.

9.	 Next, go ahead and create a MainViewModel class, as follows:

class MainViewModel(private val userService:

 UserService) : ViewModel() {

 var resultState by mutableStateOf

 <List<User>>(emptyList())

 private set

 init {

 viewModelScope.launch {

 val users = userService.getUsers()

 resultState = users

 }

 }

}

class MainViewModelFactory : ViewModelProvider.Factory {

 override fun <T : ViewModel> create(modelClass:

 Class<T>): T =

 MainViewModel(MyApplication.userService) as T

}

68 Deep Diving into Data Sources

The MainViewModel class will depend on the UserService class to get a list
of Users and store them in a Compose state that will be used in the UI. Here, we
are also creating a MainViewModelFactory class that will be responsible for
injecting the UserService class into the MainViewModel class.

10.	 Now, we move on and create a MainActivity class, as follows:

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 Exercise0203Theme {

 Surface {

 Screen()

 }

 }

 }

 }

}

Here, we initialize our activity with the content. The Exercise203Theme
theme should be replaced with the theme generated by Android Studio when the
project was created. Typically, this should be in a Theme file and should be a @
Composable function that has the application name followed by the Theme suffix.
If that is not available, you can use MaterialTheme instead for the purpose of the
exercise.

11.	 Create a Screen method in which we will grab a list of users from the
MainViewModel class and draw a list of items, as follows:

@Composable

fun Screen(viewModel: MainViewModel = viewModel

 (factory = MainViewModelFactory())) {

 UserList(users = viewModel.resultState)

}

12.	 And finally, add the UserList function from the exercise definition into the
MainActivity file.

If we launch the application after following the steps from the exercise, we should be able
to see a list of users being loaded if the device has internet access.

Using the Room library for data persistence 69

In this section, we have seen how we can typically retrieve data from the internet in an
Android application. We have looked at libraries such as OkHttp and Retrofit and seen
how straightforward it is to make HTTP calls in a type-safe way without converting JSON
files to data classes manually. We have also observed the potential of these libraries due
to their integration with asynchronous technologies such as RxJava and coroutines. In
the following section, we will look at libraries used for persisting data and how we can
integrate them with networking libraries as well as coroutines and flows.

Using the Room library for data persistence
In this section, we will discuss how to persist data in Android applications and how we
can use the Room library to do this.

Android offers many ways for persisting data on an Android device, mostly involving files.
Some of these files have a specialized approach to persisting data. One of these approaches
is in the form of SQLite. SQLite is a special type of file in which structured data can be
stored using Structured Query Language (SQL) queries, as with other types of databases
such as MySQL and Oracle.

In the past, if developers wanted to persist data in SQLite, they were required to
manually define tables, write queries, and transform objects containing this data into the
appropriate formats for performing create, read, update, and delete (CRUD) operations.
This type of work involved a load of boilerplate code that was susceptible to bugs. Room is
the answer to that by providing an abstraction layer on top of the SQLite operations.

In order to add Room to an application, we will need to add the following libraries in
build.gradle:

dependencies {

 …

 implementation "androidx.room:room-runtime:2.4.0"

 kapt "androidx.room:room-compiler:2.4.0"

 …

}

The reason for the kapt usage is that Room uses annotations that will generate the code
required for the interaction with the SQLite layer. In order to use the kapt feature, we will
need to add the plugin to the build.gradle file, as follows:

plugins {

 …

70 Deep Diving into Data Sources

 id 'kotlin-kapt'

}

This will allow the build system to analyze annotations across the project that require code
generation and generate the necessary classes based on the provided annotations.

The data we want to store is annotated with the @Entity annotation, as illustrated in the
following code snippet:

@Entity(tableName = "user")class UserEntity(

 @PrimaryKey @ColumnInfo(name = "id") val id: Long,

 @ColumnInfo(name = "name") val name: String,

 @ColumnInfo(name = "username") val username: String

)

Here, we have defined a Room entity named UserEntity that will represent a table
named user and has the primary key (PK) set to be the identifier (ID) of the user. The
@ColumnInfo annotation is for the name the column will have in the database.

A typical set of CRUD operations might look like this:

@Dao

interface UserDao {

 @Query("SELECT * FROM user")

 fun getAll(): List<UserEntity>

 @Query("SELECT * FROM user WHERE id IN (:userIds)")

 fun loadAllByIds(userIds: IntArray): List<UserEntity>

 @Insert

 fun insert(vararg users: User)

 @Update

 fun update(vararg users: User)

 @Delete

 fun delete(user: User)

}

Using the Room library for data persistence 71

Just as how we defined in Retrofit a service interface to communicate with the server,
we also define a similar interface for Room that we annotate with @Dao, for data access
object (DAO). In this example, we have defined a set of functions for getting all users
stored in a table, finding users, inserting new users, updating a user, and deleting a user.

As with Retrofit, Room also provides integrations with coroutines, as illustrated in the
following code snippet:

@Dao

interface UserDao {

 @Query("SELECT * FROM user")

 suspend fun getAll(): List<UserEntity>

 @Query("SELECT * FROM user WHERE id IN (:userIds)")

 suspend fun loadAllByIds(userIds: IntArray):

 List<UserEntity>

 @Insert

 suspend fun insert(vararg users: User)

 @Update

 suspend fun update(vararg users: User)

 @Delete

 suspend fun delete(user: User)

}

In the preceding example, we add the suspend keyword, which makes the Room library
easy to integrate and execute as part of a coroutine.

On top of coroutines, the Room library also can integrate with Kotlin flows. This is useful
for queries that will emit events every time a particular table has changed. This integration
will look something like this:

@Dao

interface UserDao {

 @Query("SELECT * FROM user")

 fun getAll(): Flow<List<UserEntity>>

72 Deep Diving into Data Sources

 @Query("SELECT * FROM user WHERE id IN (:userIds)")

 fun loadAllByIds(userIds: IntArray):

 Flow<List<UserEntity>>

}

In the preceding example, we have changed the @Query functions to return a Flow
object. If a change occurs in the user table, then the queries will be re-triggered and a new
list of users will be emitted.

We will now need to set up the database, as follows:

@Database(entities = [UserEntity::class], version = 1)

abstract class AppDatabase : RoomDatabase() {

 abstract fun userDao(): UserDao

}

In the preceding snippet, we define a new class that extends from the RoomDatabase
class and use the @Database annotation to declare our entities and the current version.
This version is used to keep track of migrations when the structure of the database
changes in between new releases of our application.

To initialize the database, we will need to execute the following code:

val db = Room.databaseBuilder(

 applicationContext,

 AppDatabase::class.java, "name"

).build()

This will create our SQLite database and will return an instance of AppDatabase
where we can access the DAO objects we have defined and invoke their methods to
process the data.

In this section, we have looked at how we can persist data using Room and how it can
be integrated with coroutines and flows. In the next section, we will create an Android
application that will use Room to persist data and look at how it can be integrated with
Retrofit and OkHttp.

Exercise 02.04 – Using Room to persist data
Integrate Room into Exercise 02.03 so that when the users are loaded from Retrofit, they
will be stored in the database and then displayed on the UI.

Using the Room library for data persistence 73

To complete the exercise, you will need to do the following:

1.	 Create a UserEntity class that will be a Room entity.
2.	 Create a UserDao class that will contain methods for inserting users and querying

all the users as flows.
3.	 Create an AppDatabase class that will represent the application's database.
4.	 Modify the MainViewModel class to fetch users from the UserService class

and then insert them into the UserDao class.
5.	 Modify the MainActivity class to use a list of UserEntity objects instead of

User objects.

Follow these steps to complete the exercise:

1.	 Add the kapt plugin to the app/build.gradle file, as follows:

plugins {

 …

 id 'kotlin-kapt'

}

2.	 Add Room dependencies to app/build.gradle, as follows:

dependencies {

 …

 implementation "androidx.room:room-runtime:2.4.0"

 implementation "androidx.room:room-ktx:2.4.0"

 kapt "androidx.room:room-compiler:2.4.0"

 …

}

3.	 Create a UserEntity class, as follows:

@Entity(tableName = "user")

class UserEntity(

 @PrimaryKey @ColumnInfo(name = "id") val id: Long,

 @ColumnInfo(name = "name") val name: String,

 @ColumnInfo(name = "username") val username:

 String,

 @ColumnInfo(name = "email") val email: String

)

74 Deep Diving into Data Sources

The UserEntity class has the same fields as the User class, and it contains the
Room annotations for the table name and the names of each column.

4.	 Next, create a UserDao class, as follows:

@Dao

interface UserDao {

 @Query("SELECT * FROM user")

 fun getUsers(): Flow<List<UserEntity>>

 @Insert(onConflict = OnConflictStrategy.REPLACE)

 fun insertUsers(users: List<UserEntity>)

}

Here, we are using flows to return a list of users, and we use the
OnConflictStrategy.REPLACE option so that if the same user is inserted
multiple times, then it will be replaced with the one that will be inserted. Other
options include OnConflictStrategy.ABORT, which will drop the entire
transaction if a conflict occurs, or OnConflictStrategy.IGNORE, which will
skip inserting rows where a conflict occurs.

5.	 Now, go ahead and create an AppDatabase class, as follows:

@Database(entities = [UserEntity::class], version = 1)

abstract class AppDatabase : RoomDatabase() {

 abstract fun userDao(): UserDao

}

In AppDatabase, we provide the UserDao class to be accessed and we use the
UserEntity class for the users' table.

6.	 Next, we will need to initialize the AppDatabase object, as follows:

class MyApplication : Application() {

 companion object {

 …

 lateinit var userDao: UserDao

 …

 }

Using the Room library for data persistence 75

 override fun onCreate() {

 super.onCreate()

 …

 val db = Room.databaseBuilder(

 applicationContext,

 AppDatabase::class.java, "my-database"

).build()

 userDao = db.userDao()

 …

 }

}

Here, we are having the same issues that we had for Retrofit, so we will follow
the same approach and use the Application class. Just as with Retrofit, a DI
framework will help us solve this problem.

7.	 Now, let's integrate Room into the MainViewModel class, as follows:

class MainViewModel(

 private val userService: UserService,

 private val userDao: UserDao

) : ViewModel() {

 var resultState by
mutableStateOf<List<UserEntity>>(emptyList())

 private set

 init {

 viewModelScope.launch {

 flow { emit(userService.getUsers()) }

 .onEach {

 val userEntities =

 it.map { user -> UserEntity

 (user.id, user.name,

 user.username, user.email) }

 userDao.insertUsers(userEntities)

 }.flatMapConcat { userDao.getUsers() }

 .catch { emitAll(userDao.getUsers()) }

76 Deep Diving into Data Sources

 .flowOn(Dispatchers.IO)

 .collect {

 resultState = it

 }

 }

 }

}

class MainViewModelFactory : ViewModelProvider.Factory {

 override fun <T : ViewModel> create(modelClass:
Class<T>): T =

 MainViewModel(MyApplication.userService,
MyApplication.userDao) as T

}

The MainViewModel class now has a new dependency on the UserDao class. In
the init block, we now create a flow in which we emit a list of users obtained from
Retrofit that is then converted into UserEntity and inserted into the database.
After this, we will query the UserEntities instances and return them in a stream
that will be the result. If we have an error, we will return the current stored users.

8.	 Finally, update the type of users in the MainActivity class, as follows:

class MainActivity : ComponentActivity() {

…

@Composable

fun UserList(users: List<UserEntity>) {

…

 }

}

Here, we just change the dependency to now rely on the UserEntity class.
If we run the application after following the steps from the exercise, we will see the same
output as for Exercise 02.03. However, if we close the application, turn on Airplane mode
on the device, and reopen the app, we will still see the previously displayed information.

In this section, we have analyzed how we can persist structured data on a device and
used the Room library to do so. We have also observed the interaction between Room
and other libraries such as Retrofit and flows and how we can use flows to combine data
streams from Room and Retrofit in a very straightforward way. In the next section, we will
look at how we can persist simple data in key-value pairs.

Understanding and using the DataStore library 77

Understanding and using the DataStore library
In this section, we will discuss how we can persist key-value pairs of data and how we
can use the DataStore library for this. In Android, we have the possibility of persisting
primitives and strings in key-value pairs. In the past, this was done through the
SharedPreferences class, which was part of the Android framework. The keys and
values would ultimately be saved inside an XML file on the device. Because this deals with
I/O operations, it evolved over time to give the possibility to save data asynchronously
and to keep an in-memory cache for quick access to data. There were, however, some
inconsistencies with this, especially when the SharedPreferences object was
initialized. DataStore is designed to address these issues because it's integrated with
coroutines and flows.

To add DataStore to a project, we will need the following dependency:

dependencies {

 …

 implementation "androidx.datastore:datastore-
preferences:1.0.0"

 …

}

Using DataStore will look something like this:

private val KEY_TEXT = stringPreferencesKey("key_text")

class AppDataStore(private val dataStore:

 DataStore<Preferences>) {

 val savedText: Flow<String> = dataStore.data

 .map { preferences ->

 preferences[KEY_TEXT].orEmpty()

 }

 suspend fun saveText(text: String) {

 dataStore.edit { preferences ->

 preferences[KEY_TEXT] = text

 }

 }

}

78 Deep Diving into Data Sources

The KEY_TEXT field will represent a key that will be used to store some text.
DataStore<Preferences> is responsible for obtaining and writing the data to
SharedPreferences. The savedText field will monitor changes in the preferences
and will emit a new value for each change in a Flow object. To write data in an
asynchronous way, we will need to edit the current data store and set the value associated
with the key.

To initialize the DataStore library, we will need to declare the following as a top-level
declaration:

val Context.dataStore: DataStore<Preferences> by
preferencesDataStore(name = "my_preferences")

This will allow us to access the DataStore library in the rest of the application.

When we want to initialize AppDataStore, we can use the following code:

val appDataStore = AppDataStore(dataStore)

This allows us to wrap the DataStore class and avoid exposing the dependencies to
other places in the application.

In this section, we have looked at how we can persist data in key-value pairs and how we
can use the DataStore library to do this. In the next section, we will create an Android
application that will use DataStore and integrate it with Kotlin flows and coroutines.

Exercise 02.05 – Using DataStore to persist data
Modify Exercise 02.04 and introduce the DataStore library, which will persist the number
of executed requests to get the user and display this number above the list of items.

To complete the exercise, you will need to do the following:

•	 Create a class named AppDataStore that will manage interaction with the
DataStore library.

•	 Modify the MainViewModel class so that the AppDataStore dependency is
injected and used to retrieve the current number of requests and increment the
number of requests.

•	 Modify the MainActivity class to add a new Text object that will display the
count of requests.

Understanding and using the DataStore library 79

Follow these steps to complete the exercise:

1.	 Add the following dependency to the app/build.gradle file:

dependencies {

 …

 implementation "androidx.datastore:datastore-

 preferences:1.0.0"

 …

}

2.	 Create an AppDataStore class, as follows:

private val KEY_COUNT = intPreferencesKey("key_count")

class AppDataStore(private val dataStore:

 DataStore<Preferences>) {

 val savedCount: Flow<Int> = dataStore.data

 .map { preferences ->

 preferences[KEY_COUNT] ?: 0

 }

 suspend fun incrementCount() {

 dataStore.edit { preferences ->

 val currentValue = preferences[KEY_COUNT]

 ?: 0

 preferences[KEY_COUNT] = currentValue.

 inc()

 }

 }

}}

Here, KEY_COUNT represents the key used by the DataStore library to store the
number of requests. The saveCount field will emit a new count value every time it
changes, and incrementCount will be increment the current saved number by 1.

3.	 Now, set up the AppDataStore dependency, just like how we handled the Retrofit
and Room dependencies. The code is illustrated in the following snippet:

val Context.dataStore: DataStore<Preferences> by
preferencesDataStore(name = "my_preferences")

80 Deep Diving into Data Sources

class MyApplication : Application() {

 companion object {

 …

 lateinit var appDataStore: AppDataStore

 }

 override fun onCreate() {

 super.onCreate()

 …

 appDataStore = AppDataStore(dataStore)

 }

}

Here, we initialize the DataStore object and then inject it into the
AppDataStore class.

4.	 Next, modify the MainViewModel class, as follows:

class MainViewModel(

 private val userService: UserService,

 private val userDao: UserDao,

 private val appDataStore: AppDataStore

) : ViewModel() {

 var resultState by mutableStateOf(UiState())

 private set

 init {

 viewModelScope.launch {

 flow { emit(userService.getUsers()) }

 .onEach {

 val userEntities =

 it.map { user -> UserEntity

 (user.id, user.name, user.

 username, user.email) }

 userDao.insertUsers(userEntities)

 appDataStore.incrementCount()

 }.flatMapConcat { userDao.getUsers() }

 .catch { emitAll(userDao.getUsers()) }

Understanding and using the DataStore library 81

 .flatMapConcat { users ->

 appDataStore.savedCount.map {

 count -> UiState(users,

 count.toString()) }

 }

 .flowOn(Dispatchers.IO)

 .collect {

 resultState = it

 }

 }

 }

}

Here, we add a new dependency to AppDataStore, then we call
incrementCount from AppDataStore after the users from Retrofit are
inserted, and then we will insert savedCount from AppDataStore into the
existing flow and create a new UiState object that contains a list of users and the
count, which will be collected in the resultState object.

5.	 The UiState class will look something like this:

data class UiState(

 val userList: List<UserEntity> = listOf(),

 val count: String = ""

)

This class will hold information from both of our persistent data sources.
6.	 Next, change MainViewModelFactory, as follows:

class MainViewModelFactory : ViewModelProvider.Factory {

 override fun <T : ViewModel> create(modelClass:

 Class<T>): T =

 MainViewModel(

 MyApplication.userService,

 MyApplication.userDao,

 MyApplication.appDataStore

) as T

}

82 Deep Diving into Data Sources

Here, we will inject a new dependency to AppDataStore into the
MainViewModel class.

7.	 Finally, modify the MainActivity class, as follows:

@Composable

fun UserList(uiState: UiState) {

 LazyColumn(modifier = Modifier.padding(16.dp)) {

 item(uiState.count) {

 Column(modifier = Modifier.padding(16.dp)) {

 Text(text = uiState.count)

 }

 }

 items(uiState.userList) {

 Column(modifier = Modifier.padding(16.dp)) {

 Text(text = it.name)

 Text(text = it.username)

 Text(text = it.email)

 }

 }

 }

}

Here, we replaced the list of UserEntity with the UiState dependency and
added a new row in a list of items that will indicate the count of requests.

If we run the application, we will see at the top the current count of requests made to
the server. If we kill and reopen the application, then we will see that count increase,
which shows how it will survive the application being stopped by the user or killed by the
operating system.

In this section, we have analyzed another common way of persisting data on an Android
device through the DataStore library. We also observed how easy it is for the DataStore
library to be integrated with flows and other libraries such as Room and Retrofit.

Summary 83

Summary
In this chapter, we have looked at how we can load and persist data in Android
and the rules we must follow for threading. We first analyzed how we can load data
asynchronously and focused on coroutines and flows, for which we have done simple
exercises for performing asynchronous operations on different threads and updating
the UI on the main thread. We then studied how to load data from the internet using
OkHttp and Retrofit, and followed this up with how to persist data using Room and
DataStore and how we can integrate all of these with coroutines and flows. We highlighted
the usage of these libraries in exercises, and we also showed how they can be integrated
with coroutines and flows. The integration of different flows of data was combined in
the ViewModel class, in which we loaded the network data and inserted it into the
local database. This is generally not a good approach, and we will expand on how we can
improve this in future chapters.

In the next chapter, we will look at how we can present data to the user and the libraries
and frameworks we can use to achieve this.

3
Understanding Data

Presentation on
Android

In this chapter, we will study the libraries available for presenting data on the user
interface (UI). We will start this chapter by analyzing the lifecycles of activities and
fragments (what responsibilities they had in the past and what responsibilities they have
now) with the introduction of the ViewModel and Lifecycle libraries. We will then
move on to analyze aspects of how the UI works and look at how the Jetpack Compose
library revolutionized building UIs through its declarative approach. Finally, we will look
at how we can navigate between different screens that are built in Compose by using the
Navigation library with the Compose extension.

86 Understanding Data Presentation on Android

In this chapter, we will cover the following main topics:

•	 Analyzing lifecycle-aware components

•	 Using Jetpack Compose to build UIs

By the end of the chapter, you will become familiar with how to present data on the UI
using ViewModel and Compose.

Technical requirements
Hardware and software requirements are as follows:

•	 Android Studio Arctic Fox 2020.3.1 Patch 3

The code files for this chapter can be found here: https://github.com/
PacktPublishing/Clean-Android-Architecture/tree/main/Chapter3.

Check out the following video to see the Code in Action: https://bit.ly/3lmMIOg

Analyzing lifecycle-aware components
In this section, we will analyze the lifecycles of activities and fragments and the
potential issues that are caused when working with them. We will also observe how the
introduction of ViewModel and LiveData solves these problems.

When the Android operating system and its development framework were released,
activities were the most commonly used components when developing an application,
as they represent the entry point of the interaction between an application and a user.
As technology in displays and resolutions improved, apps could then present more
information and controls that the user could interact with. For developers, this meant
that the code required to manage the logic for a single activity increased, especially when
dealing with different layouts for landscape and portrait. The introduction of fragments
was meant to solve some of these problems. Responsibilities for handling the logic in
different parts of the screen could now be divided into different fragments.

The introduction of fragments, however, didn't solve all of the issues developers were
dealing with, mainly because both activities and fragments have their own lifecycles.
Dealing with lifecycles created the possibility of apps having context leaks, and the
combination of lifecycles and inheritance made both activities and fragments hard to
unit test.

Analyzing lifecycle-aware components 87

The lifecycle of an activity is as follows:

Figure 3.1 – Activity lifecycle

 In Figure 3.1, we can see the six most well-known states of an activity:

•	 CREATED: The activity enters this state when the onCreate method is called. This
will be called when the system creates the activity.

•	 STARTED: The activity enters this state when the onStart method is called. This
will be called when the activity is visible to the user.

•	 RESUMED: The activity enters this state when the onResume method is called.
This will be called when the activity is in focus (the user can interact with it).

88 Understanding Data Presentation on Android

The next three states are called when the activity is no longer in focus. This can be caused
either by the user closing the activity, putting it in the background, or another component
gaining focus:

•	 PAUSED: The activity enters this state when the onPause method is called. This
will be called when the activity is visible but no longer in focus.

•	 STOPPED: The activity enters this state when the onStop method is called. This
will be called when the activity is no longer visible.

•	 DESTROYED: The activity enters this state when the onDestroy method is called.
This will be called when the activity is destroyed by the operating system.

When we use activities in our code, dealing with the lifecycle will look something like this:

class MyActivity : Activity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 }

 override fun onStart() {

 super.onStart()

 }

 override fun onResume() {

 super.onResume()

 }

 override fun onPause() {

 super.onPause()

 }

 override fun onStop() {

 super.onStop()

 }

Analyzing lifecycle-aware components 89

 override fun onDestroy() {

 super.onDestroy()

 }

}

We can see here that we need to extend the Activity class and, if we want to execute a
particular operation in a particular state, we can override the method associated with the
state and invoke the super call. This represents the main reason why activities are hard
to unit test. The super calls would cause our test not only to invoke our code but also the
parent class's code. Another reason activities are hard to test is because the system is the
one instantiating the class, which means that we cannot use the constructor of the class for
injection and must rely on setters to inject mock objects.

An important distinction should be made between the DESTROYED state and garbage
collection. A DESTROYED activity doesn't mean it will be garbage collected. A simple
definition of what garbage collection means is that garbage collection is the process of
deallocating memory that is no longer used. Each created object takes a certain amount of
memory. When the garbage collector wants to free memory, it will look at objects that are
no longer referenced by other objects. If we want to make sure that objects will be garbage
collected, we will need to make sure that other objects that live longer than them will have
no reference to the objects we want to be collected. In Android, we want context (such
as activity and service) objects, or other objects with lifecycles, to be collected when their
onDestroy methods are called. This is because they tend to occupy a lot of memory and
we will end up with crashes or bugs if we end up invoking methods after onDestroy is
called. Leaks that prevent context objects from being collected are called context leaks.
Let's look at a simple example of this:

interface MyListener {

 fun onChange(newText: String)

}

object MyManager {

 private val listeners = mutableListOf<MyListener>()

90 Understanding Data Presentation on Android

 fun addListener(listener: MyListener) {

 listeners.add(listener)

 }

 fun performLogic() {

 listeners.forEach {

 it.onChange("newText")

 }

 }

}

Here, we have a MyManager class in which we collect a list of MyListener that will be
invoked when performLogic is called. Note that the MyManager class is defined using
the object keyword. This will make the MyManager class static, which means the instance
of the class will live as long as the application process lives. If we want an activity to listen to
when the performLogic method is called, we will have something like the following:

class MyActivity : Activity(), MyListener {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 MyManager.addListener(this)

 }

 override fun onChange(newText: String) {

 myTextView.setText(newText)

 }

}

Analyzing lifecycle-aware components 91

Here, MyListener is implemented in MyActivity, and when onChange is
called, myTextView will be updated. The context leak occurs here when the activity
is destroyed. As MyActivity is a MyListener and a reference to it is kept in
MyManager, which lives longer, the garbage collector will not remove the MyActivity
instance from memory. If performLogic is called after MyActivity is destroyed,
we will get NullPointerException, because myTextView will be set to null; or, if
multiple instances of MyActivity leak, it could potentially lead to consuming the entire
application's memory. A simple fix for this is to remove the reference to MyActivity
when it is destroyed:

object MyManager {

 …

 fun removeListener(listener: MyListener){

 listeners.remove(listener)

 }

 …

}

class MyActivity : Activity(), MyListener {

 …

 override fun onDestroy() {

 MyManager.removeListener(this)

 super.onDestroy()

 }

 …

}

Here, we add a simple method to remove MyListener from the list and invoke it from
the onDestroy method.

Working with fragments will lead to the same type of problems as activities. Fragments
have their own lifecycle and inherit from a parent Fragment class, which makes them
vulnerable to context leaks and hard to unit test.

92 Understanding Data Presentation on Android

The lifecycle of a fragment is as follows:

Figure 3.2 – Fragment lifecycle

Analyzing lifecycle-aware components 93

In Figure 3.2, we can see that the fragment has similar lifecycle states to the activity. The
onAttach and onDetach callbacks deal with when the fragment is attached to and
detached from the activity. onActivityCreated is called when the activity completes
its own onCreate call. The onCreateView and onDestroyView callbacks deal
with inflating and destroying a fragment's views. One of the reasons these callbacks exist
is because of the fragment back stack. This is a stack structure in which fragments are
kept so that when the users press the Back button, the current fragment is popped out
of the stack and the previous fragment is displayed. When fragments are replaced in the
back stack, they aren't fully destroyed; just their views are destroyed to save memory.
When they are popped back to be viewed by the user, they will not be re-created, and
onCreateView will be called.

In order to solve the problems caused by dealing with activity and fragment lifecycles,
a set of libraries was created that are part of the androidx.lifecycle group. The
Lifecycle class was introduced, which is responsible for keeping the current lifecycle
state and handling transitions between lifecycle events. The events and states of the
Lifecycle class would be as follows:

Figure 3.3 – Lifecycle states

94 Understanding Data Presentation on Android

In Figure 3.3, we can see that the Lifecycle class only has four states (INITIALIZED,
CREATED, STARTED, and DESTROYED), and it will deal with six events (ON_CREATE,
ON_START, ON_RESUME, ON_PAUSE, ON_STOP, and ON_DESTROY). If we wish for
a certain class to be lifecycle-aware, it will need to implement the LifecycleOwner
interface. Activities and fragments already implement this interface. We can see
that for activities, the events match the existing callbacks, but for fragments, some
changes are required to match these new events. The onAttach, onDetach, and
onActivityCreated methods are deprecated, so they shouldn't be used with regard
to the new Lifecycle library. The other change made for fragments is the introduction
of a viewLifecycleObserver instance variable, which is used to handle the lifecycle
between onCreateView and onDestroyView. This observer should be used when
registering for lifecycle-aware components and you wish to update the UI.

In Android, when a configuration change (device rotation and language change, for
example) occurs, then activities and fragments are re-created (the current instance is
destroyed and a new instance will be created). This typically causes problems when
these configuration changes occur while data is loaded or when we want to restore the
previously loaded data. The ViewModel class is meant to solve this problem, along with
the issue of testability of activities and fragments. A ViewModel will live until the activity
or fragment it is connected to is destroyed and not re-created. The ViewModel comes
with an onCleared method, which can be overwritten to clear any subscriptions to any
pending operations.

ViewModels are often paired with a class called LiveData. This is a lifecycle-aware
component that observes and emits data. The combination of the two classes eliminates
the risks of context leaks, as LiveData will only emit data when the observer is in a
STARTED or RESUMED state. An additional benefit is that it will keep the last data
held; so, in the case of a configuration change, the last data kept in LiveData will be
re-emitted. This benefit allows activities and fragments to observe the changes and restore
the UI to the way it was before they were re-created. In Jetpack Compose, LiveData isn't
necessary due to Compose's own set of state handling classes.

To use ViewModel and LiveData, you will need the following libraries to be added to
build.gradle:

implementation "androidx.lifecycle:lifecycle-viewmodel-
ktx:2.4.0"

implementation "androidx.lifecycle:lifecycle-livedata-
ktx:2.4.0"

Analyzing lifecycle-aware components 95

For integration with Jetpack Compose we will need the following:

implementation "androidx.lifecycle:lifecycle-viewmodel-
compose:2.4.0"

implementation "androidx.compose.runtime:runtime-livedata:2.4.0
"

An example of a ViewModel and LiveData implementation will look something like
this:

class MyViewModel : ViewModel() {

 private val _myLiveData = MutableLiveData("")

 val myLiveData: LiveData<String> = _myLiveData

 init {

 _myLiveData.value = "My new value"

 }

}

In the preceding example, we extend the ViewModel class and define two LiveData
instance variables. The _myLiveData variable is defined as MutableLiveData and
is set to private. This is to prevent other objects from changing the values of LiveData.
The myLiveData variable is public and can be used by Lifecycle owners to observe
changes on LiveData.

To obtain the instance of a ViewModel in an activity or fragment, we can use the
following:

class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 …

 val myViewModel : MyViewModel by viewModels()

 …

 }

}

96 Understanding Data Presentation on Android

Here, the viewModels method will retrieve the instance of MyViewModel. The method
provides the ability to pass along a ViewModelProvider.Factory object. This is
useful in situations where we want to inject various objects in our ViewModel. This will
look something like this:

 val myViewModel : MyViewModel by viewModels {

 object : ViewModelProvider.Factory {

 override fun <T : ViewModel>

 create(modelClass: Class<T>): T {

 return MyViewModel() as T

 }

 }

 }

If we want to observe the changes on LiveData, we would need to do something like
this:

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 …

 super.onCreate(savedInstanceState)

 val myViewModel: MyViewModel by viewModels()

 myViewModel.myLiveData.observe(this) { text ->

 myTextView.text = text

 }

 …

 }

}

In the preceding example, we invoke the observe method, where we pass the activity
as LifecycleOwner and pass a Lambda as Observer, which will be invoked when
LiveData changes its value.

If we want to use ViewModel with LiveData in Jetpack Compose, we must do the
following:

@Composable

fun MyScreen(viewModel: MyViewModel = viewModel()) {

 viewModel.myLiveData.observeAsState().value?.let {

 MyComposable(it)

Analyzing lifecycle-aware components 97

 }

}

@Composable

fun MyComposable(text: String){

 …

}

Here, we are using the viewModel method to obtain the MyViewModel instance.
This method also offers the possibility of passing a ViewModelProvider.Factory
instance, such as the previous viewModel method. The observeAsState extension
method will observe changes on LiveData and convert them into a Compose State
object.

In this section, we have discussed how lifecycles work in activities and fragments and the
problems developers have when dealing with them. We have analyzed how the lifecycle-
aware components (such as ViewModel and LiveData) solved these problems. The
ViewModel class itself represents an implementation of the Model-View ViewModel
(MVVM) pattern, which will be discussed in a future chapter. In the next section, we will
look at an exercise in which we will use both ViewModel and LiveData and combine them
with Kotlin flows.

Exercise 3.1 – Using ViewModel and LiveData
Modify Exercise 2.5 from Chapter 2, Deep Diving into Data Sources, so that the state of the
UI is kept in a LiveData object inside MainViewModel, instead of using the Compose
State object, and display "Total request count: x", where x is the number of
requests at the top of the list.

To complete the exercise, you will need to build the following:

•	 Add the specified text in strings.xml.

•	 Create a MainTextFormatter class that will have one method that will return
the "Total request count: x" text.

•	 Add a dependency to MainTextFormatter in MainViewModel, and pass the
formatted text as a value for the UiState.count object.

•	 Remove resultState and replace it with a LiveData object.

•	 Update the @Composable functions to use LiveData.

98 Understanding Data Presentation on Android

Follow these steps to complete the exercise:

1.	 Add the LiveData extension library for Jetpack Compose to app/build.
gradle:

 implementation "androidx.compose.runtime:runtime-
livedata:$compose_version"

2.	 Add the "Total request count" text in strings.xml:

 <string name="total_request_count">Total request
count: %d</string>

3.	 Create the MainTextFormatter class as follows:

class MainTextFormatter(private val

 applicationContext: Context) {

 fun getCounterText(count: Int) =

 applicationContext.getString(R.string.total_
request_co

 unt, count)

}

The reason we created this class is to prevent possible context leaks by having a
Context object inside the MainViewModel class. Here, we have a method that
will take a count as a parameter and return the required text.

4.	 Inject MainTextFormatter in MainViewModel and use the formatted text as a
value for the UiState.count object:

class MainViewModel(

 …

 private val mainTextFormatter: MainTextFormatter

) : ViewModel() {

 …

 init {

 viewModelScope.launch {

 …

 .flatMapConcat { users ->

 appDataStore.savedCount.map {

 count ->

Analyzing lifecycle-aware components 99

 UiState(

 users,

 mainTextFormatter.
getCounterText(count)

)

 }

 }

 …

 }

 }

}

5.	 Next, create the instance of the MainTextFormatter class in the
MyApplication class:

class MyApplication : Application() {

 companion object {

 …

 lateinit var mainTextFormatter:

 MainTextFormatter

 }

 override fun onCreate() {

 super.onCreate()

 …

 mainTextFormatter = MainTextFormatter(this)

 }

}

6.	 Now, update MainViewModelFactory to use MainTextFormatter, which
was just created, and pass it into MainViewModel:

class MainViewModelFactory : ViewModelProvider.Factory {

 override fun <T : ViewModel> create(modelClass:

 Class<T>): T =

 MainViewModel(

 MyApplication.userService,

 MyApplication.userDao,

100 Understanding Data Presentation on Android

 MyApplication.appDataStore,

 MyApplication.mainTextFormatter

) as T

}

7.	 Next, add LiveData to MainViewModel:

class MainViewModel(

 …

) : ViewModel() {

 private val _uiStateLiveData =

 MutableLiveData(UiState())

 val uiStateLiveData: LiveData<UiState> =

 _uiStateLiveData

 init {

 viewModelScope.launch {

 …

 .collect {

 _uiStateLiveData.value = it

 }

 }

 }

}

Here, we have defined the two LiveData variables, one to update the value and
the other to be observed, and in the collect method, we update the value of
LiveData.

8.	 In MainActivity, update the @Composable functions to use LiveData:

…

@Composable

fun Screen(viewModel: MainViewModel = viewModel(factory =
MainViewModelFactory())) {

 viewModel.uiStateLiveData.observeAsState().value?.let
{

Analyzing lifecycle-aware components 101

 UserList(uiState = it)

 }

}

…

Here, we call the observeAsState extension method on LiveData from
MainViewModel, and then call the UserList method, which will redraw the UI
for each new value.

Figure 3.4 – Output of Exercise 3.1

If we run the application, we will see the same list of users, and at the top, we will see
"Total request count: x" instead of just the x character that was there before, as
shown in Figure 3.4. In this exercise, we used Jetpack Compose for rendering the UI. In
the section that follows, we will analyze how Android handles UIs and go more in-depth
into the Jetpack Compose framework.

102 Understanding Data Presentation on Android

Using Jetpack Compose to build UIs
In this section, we will analyze how to build UIs for Android applications using the View
hierarchy and look at the implications this has for applications. We will then look at how
Jetpack Compose simplifies and changes how UIs are built and how we can use Compose
to create UIs. We will be looking at Jetpack Compose with the view of how we can
integrate it with other libraries and how to build a simple UI. For more information on
how to build more complex UIs, you can refer to the official documentation found here:
https://developer.android.com/jetpack/compose.

The way Android deals with UIs is through the View hierarchy. The subclasses of View
deal with specific UI components that the user can interact with. The hierarchy looks
similar to the following diagram:

Figure 3.5 – View hierarchy

The TextView class deals with displaying text on the screen, EditText deals with
handling text inputted by the user, and Button deals with rendering buttons on the
screen. A specialized subclass of View is the ViewGroup class. This represents the
base class for various layout classes that are responsible for how the views are grouped
and arranged on the screen. Here, we find classes such as LinearLayout (which
groups views one after the other either vertically or horizontally), RelativeLayout
(which groups the views relative to the parent or to each other), or more recently,
ConstraintLayout, which offers various ways to position views however we desire
without creating many nested layouts (because it was bad for performance), which is
why it became commonly used. When it comes to dealing with displaying lists of items
of unknown lengths, objects such as ListView and RecyclerView are used. Both
require creating adapters that will be responsible for pairing an object from a list with an
associated View to render a row in the list in the UI.

Using Jetpack Compose to build UIs 103

Using ListViews is prone to inefficiencies caused when scrolling where views are
recreated for each new row, so in a long list of items, a lot of views would be created and
then garbage collected. To solve this, developers had to implement a pattern called a
ViewHolder, which is responsible for keeping references to the views created for each row
and re-using them for new rows when the user scrolls away. RecyclerView addresses
this issue so the adapter RecyclerView uses requires ViewHolder. This means that if
a user views a list of 100 items and 10 are visible on the screen, for the 10 that are visible
on the screen there would be 10 views to represent each row. When the user scrolls down,
the 10 views that were created at the beginning would then display the items for the
currently visible items. Developers can also create custom views by extending any of the
existing View classes. This is useful when certain UI components have to be re-used in
different activities, fragments, or other custom views.

To display these views to the user, we would need to use activities and fragments.
For activities, this would require invoking the setContentView method in the
onCreate method, and in fragments, we would need to return a View object in the
onCreateView method. We have the possibility of creating the entire layout for an
activity or fragment in Java or Kotlin, but this would lead to a lot of code being written.
This, and the fact that we can have different layouts for different screen sizes or device
rotation, led to using the res/layout folder, in which we can specify how a layout
might look. An example of how this might look is as follows:

<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 android:layout_width="match_parent"

 android:layout_height="match_parent">

 <TextView

 android:id="@+id/text_view"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello World"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

</androidx.constraintlayout.widget.ConstraintLayout>

104 Understanding Data Presentation on Android

In the preceding example, we define ConstraintLayout, which contains only
TextView that displays a "Hello World" text. To obtain a reference to TextView to
allow us to change the text because of an action or data being loaded, we would need to
use the findViewById method from either the Activity class or the View class. This
would look something like the following:

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 val textView =

 findViewById<TextView>(R.id.text_view)

 textView.text = "Hello new world"

 }

}

This approach would lead to possible crashes within an application. Developers
would need to make sure that when a layout was set for Activity or Fragment
and findViewById was used, then the view was added to the layout file. With
the introduction of Kotlin, this was initially addressed through the Kotlin Synthetics
framework, which generated extensions for the declared views in a layout. Kotlin
Synthetics would generate an extension for a View's android:id XML tag, which
would be accessible in the code. Later, this was replaced with ViewBinding. When
ViewBinding is used in a project, a class is generated for each layout that will
hold references to all the views in the layout, eliminating potential crashes related to
findViewById. All these approaches with regard to creating your UI are defined as
imperative because we need to specify the views that our interface uses and control how
we update the views when data is changed.

An alternative approach to this is the declarative way of creating the UI. This concept allows
us to describe what we want to show on the UI and the framework by using the appropriate
views based on the description we provide. The notions of state are introduced here,
where the UIs are redrawn when states change, rather than updating the existing views. In
Android, we can use Jetpack Compose to create UIs in a declarative way. We no longer have
to deal with the View hierarchy and instead use @Composable functions, in which we
specify what we want to display on the screen without thinking of how we need to display
it, and we can also create the UI using Kotlin using less code than we would normally. In
Compose, the Hello World example would look something like the following code:

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

Using Jetpack Compose to build UIs 105

 super.onCreate(savedInstanceState)

 setContent {

 Surface {

 HelloWorld()

 }

 }

 }

}

@Composable

fun HelloWorld() {

 Text(text = "Hello World")

}

If we want to update the text because of a change in data, we will need to use State
objects from the Compose library. Compose will observe these states and, when the
values are changed, Compose will redraw the UI associated with that state. An example of
this is as follows:

@Composable

fun HelloWorld() {

 val text = remember { mutableStateOf("Hello World") }

 ShowText(text = text.value) {

 text.value = text.value + "0"

 }

}

@Composable

fun ShowText(text: String, onClick: () -> Unit) {

 ClickableText(

 text = AnnotatedString(text = text),

 onClick = {

 onClick()

 })

}

106 Understanding Data Presentation on Android

In this example, when the text is clicked, the 0 character is appended to the text and the
UI is updated. This is because of the use of mutableStateOf. The remember method
is needed because this state is kept inside a @Composable function, and it is used to
keep the state intact while recomposition happens (the UI is redrawn). To make the text
clickable, we needed to change from Text to ClickableText. The reason we are using
two @Composable functions is that we want to keep the @Composable functions
as re-usable as possible. This is called state hoisting, where we separate the stateful
(HelloWorld) components from the stateless components (ShowText).

When it comes to rendering lists of items, Compose offers a simple way of rendering
them in the form of Column (for when the length of the list is known and short), and
LazyColumn (when the list of items is unknown and could potentially be long). An
example of this is from Exercise 3.1:

LazyColumn(modifier = Modifier.padding(16.dp)) {

 item(uiState.count) {

 Column(modifier = Modifier.padding(16.dp)) {

 Text(text = uiState.count)

 }

 }

 items(uiState.userList) {

 Column(modifier = Modifier.padding(16.dp)) {

 Text(text = it.name)

 Text(text = it.username)

 Text(text = it.email)

 }

 }

 }

Here, we display a header at the top of the item list, and we use another column to set the
padding for the row; then, we display the entire list of items with the use of the items
function, and for each row, we set the padding and display a group with three texts.

If we want to display input fields and buttons, then we can look at how we implemented
the UI in Exercise 2.1, from Chapter 2, Deep Diving into Data Sources:

@Composable

fun Calculator(

 a: String, onAChanged: (String) -> Unit,

 b: String, onBChanged: (String) -> Unit,

 result: String,

Using Jetpack Compose to build UIs 107

 onButtonClick: () -> Unit

) {

 Column(modifier = Modifier.padding(16.dp)) {

 OutlinedTextField(

 value = a,

 onValueChange = onAChanged,

 keyboardOptions = KeyboardOptions(keyboardType

 = KeyboardType.Number),

 label = { Text("a") }

)

 OutlinedTextField(

 value = b,

 onValueChange = onBChanged,

 keyboardOptions = KeyboardOptions(keyboardType

 = KeyboardType.Number),

 label = { Text("b") }

)

 Text(text = result)

 Button(onClick = onButtonClick) {

 Text(text = "Calculate")

 }

 }

}

Here, we used OutlinedTextField to render the equivalent of TextInputLayout.
We could have used TextField if we wanted the equivalent of a simple EditText. For
displaying a button, we can use the Button method, which uses Text for rendering the
text on the button.

Compose also has integrations with other libraries, such as ViewModel and LiveData:

@Composable

fun Screen(viewModel: MainViewModel = viewModel(factory =
MainViewModelFactory())) {

 viewModel.uiStateLiveData.observeAsState().value?.let {

 UserList(uiState = it)

 }

}

108 Understanding Data Presentation on Android

Here, we can pass ViewModel as a parameter in our Composable function and use the
observeAsState function to convert LiveData into a State object, which will then
be observed by Compose to redraw the UI. Compose also supports integration with the
Hilt library. When Hilt is added to a project, then there is no need to specify Factory
for the ViewModel.

Another important feature of Compose is how it deals with navigation between different
screens. The Compose navigation is built upon the androidx.navigation library.
This allows Compose to use the NavHost and NavController components to navigate
between different screens. The screens are built using Compose, which means that an
application using only Compose would ideally have only one activity. This eliminates any
potential problems regarding activity and fragment lifecycles. To introduce navigation
into a project, the following library is required:

dependencies {

 …

 implementation "androidx.navigation:navigation-
compose:2.4.0-rc01"

 …

}

If we want to navigate from one screen to another, we will need to obtain
NavHostController and pass it into a @Composable method that will represent the
structure of the application:

Surface {

 val navController = rememberNavController()

 AppNavigation(navController = navController)

}

The AppNavigation @Composable method will look something like this:

@Composable

fun AppNavigation(navController: NavHostController) {

 NavHost(navController, startDestination = "screen1") {

 composable(route = "screen1") {

 Screen1(navController)

 }

 composable(

 route = "screen2/{param}",

Using Jetpack Compose to build UIs 109

 arguments = listOf(navArgument("param") { type

 = NavType.StringType })

) {

 Screen2(navController,

 it.arguments?.getString("param").orEmpty())

 }

 }

}

In AppNavigation, we invoke the NavHost @Composable function in which we
will place the screens of the application along with a route to each of them. In this case,
Screen1 will have a simple route to navigate to and Screen2 will require an argument
when it is navigated to indicated through the {param} notation. For arguments, we will
need to specify the type of the argument. In this case, it will be String, and NavType.
StringType indicates this. If we wish to pass more complex arguments, then we will
need to supply our own custom types and indicate how they should be serialized and
deserialized. When we want to navigate from Screen1 to Screen2, then we will need to
do the following:

@Composable

fun Screen1(navController: NavController) {

 Column(modifier = Modifier.clickable {

 navController.navigate("screen2/test")

 }) {

 Text(text = "My text")

 }

}

When Column is clicked in Screen1, it will invoke NavController to navigate to
Screen2 and pass the test argument. Screen2 will look like the following:

@Composable

fun Screen2(navController: NavController, text: String) {

 Column {

 Text(text = text)

 }

}

Screen2 will use the text extracted from it.arguments?.getString("param").
orEmpty() and it will display it on the UI.

110 Understanding Data Presentation on Android

In this section, we have discussed how Android deals with UIs. We have looked over
the imperative approach and then introduced the declarative approach for Uis. We have
analyzed the Jetpack Compose library and the problems it attempts to solve, such as
less code and no XML declarations for layouts. It follows the principles of libraries from
other technologies (such as React and SwiftUI) and shows how UIs can be built from a
functional programming point of view. In the next section, we will look at an exercise for
how we can use Compose to navigate between two screens in an application.

Exercise 3.2 – Navigating using Jetpack Compose
Modify Exercise 3.1 so that the current @Composable functions are moved into a new
file named UserListScreen, then create a new file with new @Composable functions
that will render a simple text called UserScreen. When a user from the list is clicked,
the new screen is opened and it will display the name of the user.

To complete the exercise, you will need to build the following:

1.	 Create an AppNavigation sealed class that will have two variables. The
first variable, named route, will be String and the second variable, named
argumentName, will be String and default to empty. Two subclasses of
AppNavigation will be Users (which will set the route variable to "users")
and User (which will set the route to "users/{name}", then argumentName
to name, and a method to create the route for a specific name).

2.	 In MainActivity, rename the screen @Composable function to Users, and
using the NavController object, set up a click listener on the list row and
navigate to the route from the User class in AppNavigation.

3.	 Create a new @Composable function named User, which will be responsible for
showing a simple Text and will have the text displayed as a parameter.

4.	 In MainActivity, create a @Composable function named
MainApplication, which will use the NavHost @Composable function to link
the navigation between the two screens.

Follow these steps to complete the exercise:

1.	 Add the navigation library for Compose in app/build.gradle:

dependencies {

 …

 implementation "androidx.navigation:navigation-
compose:2.4.0-rc01"

 …

}

Using Jetpack Compose to build UIs 111

2.	 Create the AppNavigation class, which will hold the information for the routes
and arguments for each of our screens:

private const val ROUTE_USERS = "users"

private const val ROUTE_USER = "users/%s"

private const val ARG_USER_NAME = "name"

sealed class AppNavigation(val route: String, val

 argumentName: String = "") {

 object Users : AppNavigation(ROUTE_USERS)

 object User : AppNavigation

 (String.format(ROUTE_USER, "{$ARG_USER_NAME}")

 , ARG_USER_NAME) {

 fun routeForName(name: String) =

 String.format(ROUTE_USER, name)

 }

}

As the navigation relies on URLs to identify the different screens, we can take
advantage of sealed classes and objects in Kotlin to keep track of the required inputs
for each screen.

3.	 Rename the screen @Composable function to Users in MainActivity and add
NavController as a parameter:

@Composable

fun Users(

 navController: NavController,

 viewModel: MainViewModel = viewModel(factory =

 MainViewModelFactory())

) {

 viewModel.uiStateLiveData.observeAsState().value?.let
{

 UserList(uiState = it, navController)

 }

}

112 Understanding Data Presentation on Android

4.	 Next, pass the NavController parameter to UserList and implement the click
listener for the user row:

@Composable

fun UserList(uiState: UiState, navController:
NavController) {

 LazyColumn(modifier = Modifier.padding(16.dp)) {

 item(uiState.count) {

 Column(modifier = Modifier.padding(16.dp)) {

 Text(text = uiState.count)

 }

 }

 items(uiState.userList) {

 Column(modifier = Modifier

 .padding(16.dp)

 .clickable {

 navController.navigate

 (AppNavigation.User.routeForName

 (it.name))

 }) {

 Text(text = it.name)

 Text(text = it.username)

 Text(text = it.email)

 }

 }

 }

}

5.	 Create the User @Composable function in MainActivity:

@Composable

fun User(text: String) {

 Column {

 Text(text = text)

 }

}

Using Jetpack Compose to build UIs 113

6.	 Now, create an App @Composable function that will use NavHost to set up the
navigation between the two screens in MainActivity:

@Composable

fun App(navController: NavHostController) {

 NavHost(navController, startDestination =

 AppNavigation.Users.route) {

 composable(route = AppNavigation.Users.route) {

 Users(navController)

 }

 composable(

 route = AppNavigation.User.route,

 arguments = listOf(navArgument

 (AppNavigation.User.argumentName) {

 type = NavType.StringType

 })

) {

 User(it.arguments?.getString(AppNavigation.
User.argumentName).orEmpty())

 }

 }

}

7.	 Finally, invoke the App function when the Activity content is set in
MainActivity:

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 Exercise0302Theme {

 // Replace this with your application's theme

 Surface {

 val navController =

 rememberNavController()

 App(navController = navController)

 }

 }

114 Understanding Data Presentation on Android

 }

 }

}

Figure 3.6 – Output of Exercise 3.2

If we run the application, we should see the same list of users as before, and if we click on
a user, it will transition to a new screen that will display the selected user's name, as shown
in Figure 3.6. If we press the Back button, we should see the initial list of users; that's
because, by default, the navigation library handles back navigation.

In this exercise, we have analyzed how we can use Jetpack Compose to navigate between
two screens in an application. In future chapters, we will revisit navigation when we must
navigate between different screens in different modules.

Summary 115

Summary
In this chapter, we have analyzed how data can be presented in Android and discussed the
libraries we have available now. We have looked at Android lifecycles and the potential
issues that applications could have regarding lifecycles and then looked at how libraries
such as ViewModel and LiveData solve most of these problems. We then looked at
how the UI works in Android and how we would need to deal with using XML to define
layouts in which we would insert the views that the layouts needed to display, and how
we would need to update the state of the views when the data changes. We then looked at
how Jetpack Compose solves these issues in a declarative functional way. We built upon
the exercises in the previous chapter to show how we can integrate multiple libraries in a
single application and display data from the internet.

In the next chapter, we will deal with managing the dependencies inside an application
and the libraries available for doing so.

4
Managing

Dependencies in
Android Applications
In this chapter, we will analyze the concept of dependency injection (DI) and the benefits
it provides and look at how this was done in the past in Android applications either
through manual injection or using Dagger 2. We will go over some of the libraries used in
Android applications, stopping and looking in more detail at the Hilt library and how it
simplifies DI for an Android application.

In this chapter, we will cover the following topics:

•	 Introduction to DI

•	 Using Dagger 2 to manage dependencies

•	 Using Hilt to manage dependencies

By the end of this chapter, you will be familiar with the DI pattern and libraries such as
Dagger and Hilt, which can be used to manage dependencies in Android applications.

118 Managing Dependencies in Android Applications

Technical requirements
The hardware and software requirements are as follows:

•	 Android Studio Arctic Fox 2020.3.1 Patch 3

The code files for this chapter can be found here: https://github.com/
PacktPublishing/Clean-Android-Architecture/tree/main/Chapter4.

Check out the following video to see the Code in Action: https://bit.ly/38yFDHz

Introduction to DI
In this section, we will look at what DI is, the benefits it provides, and how this concept is
applied to an Android application. We will then look at some DI libraries and how they
work.

When a class depends on functionality from another class, a dependency is created
between the two classes. To invoke the functionality on the class you depend on, you will
need to instantiate it, as in the following example:

 class ClassA() {

 private val b: ClassB = ClassB()

 fun executeA() {

 b.executeB()

 }

}

class ClassB() {

 fun executeB() {

 }

}

Introduction to DI 119

In this example, ClassA creates a new instance of ClassB, and then when executeA
is invoked, it will invoke executeB. This poses a problem because ClassA will have
the extra responsibility of creating ClassB. Let's see what happens if ClassB needs to
change to something such as the following:

class ClassB(private val myFlag: Boolean) {

 fun executeB() {

 if (myFlag) {

 // Do something

 } else {

 // Do something else

 }

 }

}

Here, we added the myFlag variable to ClassB, which is used in the executeB
method. This change would cause a compile error because now ClassA will need to be
modified to make the code compile.

class ClassA() {

 private val b: ClassB = ClassB(true)

 fun executeA() {

 b.executeB()

 }

}

Here, we will need to supply a Boolean value when we create ClassB.

Making these types of changes to an application as its code base increases will make it
hard to maintain. A solution to this problem is to separate how we use dependencies and
how we create them and delegate the creation to a different object. Continuing from the
preceding example, we can rewrite ClassA as the following:

class ClassA(private val b: ClassB) {

 fun executeA() {

120 Managing Dependencies in Android Applications

 b.executeB()

 }

}

Here, we removed the instantiation of ClassB and moved the variable in the constructor
of ClassA. Now, we can create a class that will be responsible for creating the instances of
both classes that looks like the following:

class Injector() {

 fun createA(b: ClassB) = ClassA(b)

 fun createB() = ClassB(true)

}

Here, we have a new class that will create an instance of ClassA with ClassB as a
parameter and a separate method for creating an instance of ClassB. Ideally, when the
program is initialized, we would need to initialize all the dependencies and pass them
appropriately:

fun main(args : Array<String>) {

 val injector = Injector()

 val b = injector.createB()

 val a = injector.createA(b)

}

Here, we created Injector, which is responsible for creating our instances, and then
invoked the appropriate methods on Injector to retrieve the appropriate instances of
each class. What we have done here is called DI. Instead of ClassA creating the instance
of ClassB, it will have an instance of ClassB injected through the constructor, also
known as constructor injection.

In ClassB, we have an if-else statement in the executeB method. We can
introduce an abstraction there, so we split the if-else statement into two separate
implementations:

class ClassA(private val b: ClassB) {

 fun executeA() {

 b.executeB()

Introduction to DI 121

 }

}

interface ClassB {

 fun executeB()

}

class ClassB1() : ClassB {

 override fun executeB() {

 // Do something

 }

}

class ClassB2() : ClassB {

 override fun executeB() {

 // Do something else

 }

}

Here, ClassA remains the same and ClassB has become an interface with two
implementations, called ClassB1 and ClassB2, representing the implementations of
the if-else branch. Here, we can use the Injector class as well to inject one of the
two implementations without requiring any change on ClassA:

class Injector() {

 fun createA(b: ClassB) = ClassA(b)

 fun createB() = ClassB1()

}

122 Managing Dependencies in Android Applications

In the createB method, we return an instance of ClassB1, which will then be later
injected into ClassA. This represents another benefit of DI, where we can make our code
depend on abstractions rather than concretions and provide different concretions for
different purposes. Based on this, we can define the following roles when it comes to DI:

•	 Service: Represents the object that contains useful functionality (ClassB1 and
ClassB2 in our example)

•	 Interface: Represents the service abstraction (ClassB in our example)

•	 Client: Represents the object that depends on the service (ClassA in our example)

•	 Injector: Represents the object responsible for constructing the services and
injecting them into the client (Injector in our example)

Figure 4.1 – DI class diagram

The preceding figure shows the class diagram of our example and the DI pattern. We
can observe how the Injector class is responsible for creating and injecting the
dependencies, ClassA is the client receiving a dependency to ClassB, which is the
interface, and ClassB1 and ClassB2 represent the services.

There are multiple classifications of the types of DI, and they mainly revolve around two
ways of injecting dependencies:

•	 Constructor injection: Where dependencies are passed through the constructor.

Using Dagger 2 to manage dependencies 123

•	 Field injection: Where dependencies are passed through setter methods or by
changing the instance variables. This can also be referred to as setter injection
and it can also be expanded to interface injection in which the setter method is
abstracted to an interface.

Another benefit of DI is the fact that it makes the code more testable. When dependencies
are injected into an object, it makes the class easier to test, because in the test code, we can
inject objects that allow us to mimic various behaviors, called mocks.

In this section, we have introduced the DI pattern, how it works, and the problems it is
solving. Developers can manage an application's dependencies and injection manually, by
setting up injectors. But as an application grows, it becomes hard to maintain, especially
when we want certain objects to live only as long as other objects and not as long as
the application, or handle different instances of the same class. There are various DI
frameworks and libraries that can manage all these cases and in Android, one of the most
commonly used ones is Dagger 2.

Using Dagger 2 to manage dependencies
In this section, we will analyze the Dagger 2 library, how it handles DI, how it works, how
it is integrated into an Android application, and what issues it might create.

The Dagger 2 library relies on code generation based on annotation processing, which will
generate the boilerplate code that is required to perform DI. The library is written in Java,
and it is used for various projects outside of Android applications. Because it is written in
Java, it provides compatibility for apps written in Java, Kotlin, or both. The library is built
using Java Specification Requests (JSR) 330, which provide a set of useful annotations
for DI (@Inject, @Named, @Qualifier, @Scope, and @Singleton).

When integrating Dagger 2, there are three main concepts that we will need to consider:

•	 Provider: This is represented by the classes responsible for providing the
dependencies, using the @Module annotation for the classes and @Provides
for the methods. To avoid many @Module definitions, we can use the @Inject
annotation on a constructor, which will provide the object as a dependency.

•	 Consumer: This is represented by the classes where the dependencies are required
using the @Inject annotation.

•	 Connector: This is represented by the classes that connect the providers with the
consumers and is annotated with the @Component annotation.

124 Managing Dependencies in Android Applications

In order to add Dagger 2 to an Android application, you will first need to add the Kotlin
annotation processor plugin to the build.gradle file of the module in which Dagger 2
is used:

plugins {

 …

 id 'kotlin-kapt'

 …

}

Here, we added the kotlin-kapt plugin to allow Dagger 2 to generate the code
necessary for DI. Next, we will need the Dagger 2 dependencies:

dependencies {

 …

 implementation 'com.google.dagger:dagger:2.40.5'

 kapt 'com.google.dagger:dagger-compiler:2.40.5'

 …

}

Here, we are adding a dependency to the Dagger 2 library and a dependency to the
annotation processing library, which has the role of code generation. The library version
should ideally be the latest stable one available in the library repository.

Let's now re-introduce the example from the previous section:

class ClassA(private val b: ClassB) {

 fun executeA() {

 b.executeB()

 }

}

interface ClassB {

 fun executeB()

}

class ClassB1() : ClassB {

Using Dagger 2 to manage dependencies 125

 override fun executeB() {

 // Do something

 }

}

class ClassB2() : ClassB {

 override fun executeB() {

 // Do something else

 }

}

Here, we have the same classes with the same dependencies. Instead of defining an
Injector class, we can use Dagger 2 to define an @Module:

@Module

class ApplicationModule {

 @Provides

 fun provideClassA(b: ClassB): ClassA = ClassA(b)

 @Provides

 fun provideClassB(): ClassB = ClassB1()

}

Here, we annotated the class with @Module and for each instance, we used the
@Provides annotation. We can further simplify this with the @Inject annotation and
delete the @Provides methods from ApplicationModule:

class ClassA @Inject constructor(private val b: ClassB) {

 …

}

class ClassB1 @Inject constructor() : ClassB {

 …

}

class ClassB2 @Inject constructor() : ClassB {

126 Managing Dependencies in Android Applications

 …

}

In the preceding code, we have added @Inject for each constructor. In the case
of ClassA, it will have both the role of injecting ClassB and providing ClassA
to other objects as a dependency. There is, however, an issue because ClassA has a
dependency on the abstraction rather than the concretion, so Dagger will not know
which instance to provide to ClassA. We can now add an @Binds annotated method to
ApplicationModule, which will connect the abstraction with the implementation:

@Module

abstract class ApplicationModule {

 @Binds

 abstract fun bindClassB(b: ClassB1): ClassB

}

Here, we added the bindClassB abstract method, which is annotated with @Binds.
This method will tell Dagger 2 to connect the ClassB1 implementation with the ClassB
abstraction. To avoid large @Provides annotations, we should try to use the annotation
for dependencies where we cannot modify the code and instead rely on @Inject on the
constructors and using @Binds where possible.

Now, we will need to create the connector:

@Singleton

@Component(modules = [ApplicationModule::class])

interface ApplicationComponent

Here, we are defining an @Component in which we specify the module the application will
use. The @Singleton annotation tells Dagger that all the dependencies in this component
will live as long as the application. At this point, we should trigger a build on the application.
This will trigger the compilation, which will generate a DaggerApplicationComponent
class. This is an implementation of ApplicationComponent that Dagger 2 will handle.
This class will be used to create the entire dependency graph. In Android, we need an entry
point for this, which is represented by the Application class:

class MyApplication : Application() {

 lateinit var component: ApplicationComponent

Using Dagger 2 to manage dependencies 127

 override fun onCreate() {

 super.onCreate()

 component = DaggerApplicationComponent.create()

 }

}

Here, in the MyApplication class, we are using DaggerApplicationComponent
and creating the dependency graph. This will go over all the modules in the graph and
invoke all the @Provides methods. The @Component annotation has another role,
which is to define member injection when constructor injection is not possible. In
Android, this situation occurs when dealing with life cycle components such as activities
and fragments, because we are not allowed to modify the default constructors of these
classes. To do this, we can do the following:

@Singleton

@Component(modules = [ApplicationModule::class])

interface ApplicationComponent {

 fun inject(mainActivity: MainActivity)

}

In ApplicationComponent, we add a method called inject and the Activity
where we want the injection to be performed. In the MainActivity class, we will need
to do the following:

class MainActivity : AppCompatActivity() {

 @Inject

 lateinit var a: ClassA

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 (application as

 MyApplication).component.inject(this)

 a.executeA()

 }

}

128 Managing Dependencies in Android Applications

Here, we will need to access the ApplicationComponent instance created in
MyApplication and then invoke the inject method from ApplicationCom-
ponent. This will then initialize variable a with the instance Dagger 2 created. This
approach has a problem, however, because all the dependencies will live as long as
the application. This means that Dagger 2 will need to keep dependencies in memory
when they are not required. Dagger 2 offers a solution for this in the form of scopes and
subcomponents. We can create a new Scope, which will tell Dagger 2 to only keep certain
dependencies as long as an Activity is alive, and then apply this Scope to a Subcomponent,
which will handle a smaller graph of dependencies.

@Scope

@MustBeDocumented

@kotlin.annotation.Retention(AnnotationRetention.RUNTIME)

annotation class ActivityScope

Here, we created a new @Scope annotation, which will indicate that dependencies
will live as long as activities. We will next use @ActivityScope to create an @
Subcomponent annotated class:

@ActivityScope

@Subcomponent(modules = [ApplicationModule::class])

interface MainSubcomponent {

 fun inject(mainActivity: MainActivity)

}

Here, we have defined a subcomponent that will use ApplicationModule and has an
inject method for field injection into MainActivity. After that, we will need to tell
Dagger 2 to create MainSubcomponent, by modifying ApplicationComponent:

@Singleton

@Component

interface ApplicationComponent {

 fun createMainSubcomponent(): MainSubcomponent

}

Using Dagger 2 to manage dependencies 129

Here, we have removed ApplicationModule from @Component and replaced the
inject method with a createMainSubcomponent method, which will allow Dagger
to create MainSubcomponent. Finally, we will need to access MainSubcomponent in
MainActivity and inject the ClassA dependency:

class MainActivity : AppCompatActivity() {

 @Inject

 lateinit var a: ClassA

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 (application as MyApplication).component.

 createMainSubcomponent().inject(this)

 a.executeA()

 }

}

Here, we access the ApplicationComponent instance from MyApplication,
then create MainSubcomponent and then inject the ClassA dependency into the
a variable. The code generated by Dagger 2 can be seen in the {module}/build/
generated/source/kapt/{build type} folder and will look something similar
to the following figure:

Figure 4.2 – Generated Dagger Classes

130 Managing Dependencies in Android Applications

In the preceding figure, we can see Dagger will generate the implementation for
the ApplicationComponent interface as well as the MainSubcomponent
implementation. For dependencies that will need to be injected, it will generate a
Factory class to create the dependency. Where we are injecting through the members,
it will create an Injector class, which will be responsible for setting the value on the
member variable, like the MainActivity class.

In this section, we have discussed the Dagger 2 library and how it can be used to provide
and inject dependencies. Because it is a library used in other frameworks other than
Android, it requires specific workarounds for injecting in activities and fragments,
using member injectors and Subcomponents. An attempt at fixing this was through
the introduction of the Dagger Android library, which handled the creation of
@Subcomponent annotated classes and introduced new annotations to indicate how
Subcomponents should be created. More recently, the introduction of the Hilt library
was more effective at solving these problems by further simplifying the amount of code
developers needed to write and providing better compatibility with components such as
ViewModel. In the section that follows, we will look at the Hilt library and how it solves
these problems.

Using Hilt to manage dependencies
In this section, we will discuss the Hilt DI library, how we can use it in an Android
application, and the extra features it provides on top of the Dagger 2 library.

Hilt is a library built on top of Dagger 2 with a specific focus on Android applications.
This is to remove the extra boilerplate code that was required to use Dagger 2 in an
application. Hilt removes the need to use @Component and @Subcomponent annotated
classes and in turn offers new annotations:

•	 When injecting dependencies in Android classes, we can use @HiltAndroidApp
for Application classes, @AndroidEntryPoint for activities, fragments,
services, broadcast receivers, and views, and @HiltViewModel for ViewModels.

•	 When using the @Module annotation, we now have the option to use
@InstallIn and specify an @DefineComponent annotated class, which
represents the component the module will be added to. Hilt provides a set of useful
components to install modules in:

	� @SingletonComponent: This will make the dependencies live as long as the
application.

	� @ViewModelComponent: This will make the dependencies live as long as
a ViewModel.

Using Hilt to manage dependencies 131

	� @ActivityComponent: This will make the dependencies live as long as an
Activity.

	� @FragmentComponent: This will make the dependencies live as long as
a Fragment.

	� @ServiceComponent: This will make the dependencies live as long as
a Service.

In order to use Hilt in a project, it will require a Gradle plugin, which will need to be
added as a dependency to the root build.gradle file in the project:

buildscript {

 repositories {

 …

 }

 dependencies {

 …

 classpath 'com.google.dagger:hilt-android-gradle-

 plugin:2.40.5'

 }

}

We will then need to add the annotation processor plugin and the Hilt plugin to the
build.gradle file of the Gradle module that we want to use the Hilt library in:

plugins {

 …

 id 'kotlin-kapt'

 id 'dagger.hilt.android.plugin'

}

The combination of these two plugins is what allows Hilt to generate the necessary source
code for injecting the dependencies. Finally, we will need to add the dependency to the
Hilt library:

dependencies {

 …

 implementation 'com.google.dagger:hilt-android:2.40.5'

 kapt 'com.google.dagger:hilt-compiler:2.40.5'

 …

}

132 Managing Dependencies in Android Applications

Here, we need the dependency on the library itself and a dependency on the annotation
processor like how it was necessary for Dagger 2.

Let's now re-introduce the example from the previous section:

class ClassA @Inject constructor(private val b: ClassB) {

 fun executeA() {

 b.executeB()

 }

}

interface ClassB {

 fun executeB()

}

class ClassB1 @Inject constructor() : ClassB {

 override fun executeB() {

 // Do something

 }

}

class ClassB2 @Inject constructor() : ClassB {

 override fun executeB() {

 // Do something else

 }

}

Here, we can keep the same structure of our classes and use the @Inject annotation like
previously. The @Module annotated class that will provide these dependencies will look
similar to a Dagger 2 Module:

@Module

@InstallIn(SingletonComponent::class)

abstract class ApplicationModule {

Using Hilt to manage dependencies 133

 @Binds

 abstract fun bindClassB(b: ClassB1): ClassB

}

In the ApplicationModule class, we keep the same implementation as before but
now we have added the @InstallIn annotation, which will make the dependencies
provided by this module live as long as the application will. Next, we will need to trigger
the generation of components:

@HiltAndroidApp

class MyApplication : Application()

Here, we no longer need to use DaggerApplicationComponent to manually
trigger the creation of the dependency graph and instead use @HiltAndroidApp,
which will do this for us, as well as providing the ability to inject dependencies into
the MyApplication class. Finally, we will need to inject the dependencies into an
Activity:

@AndroidEntryPoint

class MainActivity : AppCompatActivity() {

 @Inject

 lateinit var a: ClassA

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 a.executeA()

 }

}

134 Managing Dependencies in Android Applications

Here, we use the @AndroidEntry point to inform Hilt that we want to inject a
dependency into an Activity and then use the @Inject annotation like how it worked in
Dagger 2. The code generated by Hilt will look similar to the following figure and can be
found in {module}/build/generated/source/kapt/{build type}:

Figure 4.3 – Generated Hilt Classes

In the preceding figure, we can see Factory classes like the ones that Dagger 2 generates,
but extra classes that Hilt will generate to handle the boilerplate work that was required
to work with Dagger 2, such as handling the injection into activities and fragments or
creating the dependency graph in the Application class.

In this section, we discussed the Hilt library, how we can use it to manage dependencies
in an Android application, and how it removes boilerplate code that Dagger 2 required.
In the following section, we will look at an exercise on integrating Hilt into an application
together with other libraries.

Exercise 04.01 – Using Hilt to manage dependencies
Modify Exercise 03.02 – navigating using Jetpack Compose from Chapter 3, Understanding
Data Presentation on Android, so that it will use Hilt to manage the dependencies across
the application.

Using Hilt to manage dependencies 135

To complete the exercise, you will need to do the following:

1.	 Add the Hilt library to the project.
2.	 Create a NetworkModule class that will provide the Retrofit dependencies.
3.	 Create a PersistenceModule class that will provide the Room and Data Store

dependencies.
4.	 Clean up the MyApplication class, delete the MainViewModelFactory class,

and instead use the @HiltViewModel annotation.
5.	 Modify MainActivity to instead obtain an instance of the MainView model

from the Hilt Compose Navigation library.

Follow these steps to complete the exercise:

1.	 Add the Hilt Gradle plugin to the root project build.gradle file:

buildscript {

 repositories {

 …

 }

 dependencies {

 …

 classpath 'com.google.dagger:hilt-android-

 gradle-plugin:2.40.5'

 }

}

2.	 Apply the Gradle plugin to the build.gradle file in the app module:

plugins {

 …

 id 'dagger.hilt.android.plugin'

}

3.	 Add the Hilt library dependency to the app module's build.gradle file:

dependencies {

 …

 implementation 'com.google.dagger:hilt-android

 :2.40.5'

 kapt 'com.google.dagger:hilt-compiler:2.40.5'

136 Managing Dependencies in Android Applications

 implementation 'androidx.hilt:hilt-navigation-

 compose:1.0.0-rc01'

 …

}

Here, we added a dependency that allows Hilt to work with the Jetpack Compose
Navigation library.

4.	 Create a NetworkModule class in which the networking dependencies are
provided:

@Module

@InstallIn(SingletonComponent::class)

class NetworkModule {

 @Provides

 fun provideOkHttpClient(): OkHttpClient =

 OkHttpClient

 .Builder()

 .readTimeout(15, TimeUnit.SECONDS)

 .connectTimeout(15, TimeUnit.SECONDS)

 .build()

 @Provides

 fun provideMoshi(): Moshi = Moshi.Builder().

 add(KotlinJsonAdapterFactory()).build()

 @Provides

 fun provideRetrofit(okHttpClient: OkHttpClient,

 moshi: Moshi): Retrofit = Retrofit.Builder()

 .baseUrl("https://jsonplaceholder.typicode.com/")

 .client(okHttpClient)

 .addConverterFactory(MoshiConverterFactory.create

 (moshi))

 .build()

 @Provides

 fun provideUserService(retrofit: Retrofit):

Using Hilt to manage dependencies 137

 UserService =

 retrofit.create(UserService::class.java)

}

Here, we have moved all the dependencies for networking and split them into
separate methods for OkHttplClient, Moshi, Retrofit, and finally, the
UserService class.

5.	 Next, create a PersistenceModule class, which will return all the persistence-
related dependencies:

val Context.dataStore: DataStore<Preferences> by
preferencesDataStore(name = "my_preferences")

@Module

@InstallIn(SingletonComponent::class)

class PersistenceModule {

 @Provides

 fun provideAppDatabase(@ApplicationContext

 context: Context): AppDatabase =

 Room.databaseBuilder(

 context,

 AppDatabase::class.java, "my-database"

).build()

 @Provides

 fun provideUserDao(appDatabase: AppDatabase):

 UserDao = appDatabase.userDao()

 @Provides

 fun provideAppDataStore(@ApplicationContext

 context: Context) = AppDataStore

 (context.dataStore)

}

138 Managing Dependencies in Android Applications

Here, we have moved all the Room-related classes and the Data Store classes.
For DataStore, we are required to declare the Context.dataStore file at
the top level of the file, so we will need to keep it here. The usage of
@ApplicationContext is meant to denote that the Context object is
represented by context of the application and not other Context objects such as an
Activity object or Service object. The annotation is a Qualifier, which is
meant to distinguish between different instances of the same class (in this case, it's
to distinguish between the application context and activity context).

6.	 Add the @Inject annotation to the constructor of the MainTextFormatter
class:

class MainTextFormatter @Inject constructor(@
ApplicationContext private val applicationContext:
Context) {

 fun getCounterText(count: Int) =

 applicationContext.getString(R.string.total_

 request_count, count)

}

This will let Hilt provide a new instance of MainTextFormatter every
time it will be used as a dependency. Here, again, we will need to use the
@ApplicationContext annotation to use the application Context object.

7.	 Delete all the dependencies in the MyApplication class and add the
@HiltAndroidApp annotation:

@HiltAndroidApp

class MyApplication : Application()

8.	 Delete the MainViewModelFactory class.
9.	 Add the @HiltViewModel annotation to the MainViewModel class and

@Inject to the constructor:

@HiltViewModel

class MainViewModel @Inject constructor(

 private val userService: UserService,

 private val userDao: UserDao,

 private val appDataStore: AppDataStore,

 private val mainTextFormatter: MainTextFormatter

) : ViewModel() {

Using Hilt to manage dependencies 139

 …

}

10.	 Delete the reference to MainViewModelFactory in the Users @Composable
method in MainActivity:

@Composable

fun Users(

 navController: NavController,

 viewModel: MainViewModel

) {

 …

}

11.	 Change the @Composable App method in MainActivity so that it provides a
MainViewModel instance when it invokes the Users method:

@Composable

fun App(navController: NavHostController) {

 NavHost(navController, startDestination =
AppNavigation.Users.route) {

 composable(route = AppNavigation.Users.route) {

 Users(navController, hiltViewModel())

 }

 composable(

 route = AppNavigation.User.route,

 arguments = listOf(navArgument

 (AppNavigation.User.argumentName) {

 type = NavType.StringType

 })

) {

 User(it.arguments?.getString(AppNavigation.
User.

 argumentName).orEmpty())

 }

 }

}

Here, we are using the hiltViewModel method, which is from the Hilt
compatibility library with the Navigation library.

140 Managing Dependencies in Android Applications

12.	 Add the @AndroidEntryPoint annotation to MainActivity:

@AndroidEntryPoint

class MainActivity : ComponentActivity() {

 …

}

13.	 If you encounter a Records requires ASM8 error when building the
application, then add the following to the root project's gradle.properties file:

android.jetifier.ignorelist=moshi-1.13.0

This error is caused by an incompatibility that currently exists in the Android build
tools and should be resolved when later updates are available.

If we run the application covered in this exercise, the functionality and user interface
should remain the same as before. The role of Hilt here was to simplify how we manage
dependencies, shown by how we have simplified the MyApplication class, leaving it
with a simple annotation, and the fact that we have removed MainViewModelFactory,
which itself had to depend on the MyApplication class. We can also see how easy it is
to integrate Hilt with the rest of the libraries we used in the exercise.

Summary
In this chapter, we looked at the DI pattern and some of the more popular libraries that
are available to apply this pattern to an Android application. We looked initially at Dagger
2 and how it can be integrated into an application, and then we analyzed the Hilt library,
which is built on top of Dagger 2 and solves further problems that are specific to Android
development.

There are other libraries that can be used to manage dependencies, such as Koin, which
uses the Service Locator pattern (in which a registry is created and dependencies can be
obtained) and is developed for Kotlin development. The exercise in this chapter showed
how Hilt can be integrated with other libraries into an Android application. The problem
is that the application still has no shape; there isn't anything we can point to that indicates
what the use cases are. In the chapters that follow, we will look further into how we can
structure our code to give it a shape using the Clean Architecture principles, starting with
defining entities and use cases.

Part 2 – Domain and
Data Layers

In this part, you will learn about the data and domain layers, how to structure your code
into these two layers, and what components are involved in assembling them.

This part includes the following chapters:

•	 Chapter 5, Building the Domain of an Android Application

•	 Chapter 6, Assembling a Repository

•	 Chapter 7, Building Data Sources

5
Building the Domain

of an Android
Application

In this chapter, we will analyze what the architecture of an Android application typically
looks like and its three main layers (presentation, domain, and data). Then, we will learn
how we can translate it into clean architecture and focus on the domain layer, which sits
at the center of the architecture. Next, we will look at the role it plays in the architecture of
an application and what its entities and use cases are. Finally, we will look at an exercise,
in which we are going to see how we can set up an Android Studio project with multiple
modules and use them to structure the domain layer.

In this chapter, we will cover the following topics:

•	 Introducing the app's architecture

•	 Creating the domain layer

By the end of this chapter, you will be familiar with the domain layer of an application,
domain entities, and use cases.

144 Building the Domain of an Android Application

Technical requirements
These are the hardware and software requirements:

•	 Android Studio – Arctic Fox | 2020.3.1 Patch 3

The code files for this chapter can be found here: https://github.com/
PacktPublishing/Clean-Android-Architecture/tree/main/Chapter5.

Check out the following video to see the Code in Action: https://bit.ly/3826FH6

Introducing the app's architecture
In this section, we will discuss the most common architecture that can be applied to an
Android application and how it can be combined with clean architecture principles, and
see how we should ideally structure our code base.

In the exercises from the previous chapters, we saw how, for an application that requires
the integration of multiple data sources for networking and persistence, we had to
put a lot of logic inside the ViewModel class. In those examples, ViewModel had
multiple responsibilities, including fetching the data from the internet, persisting it
locally, and holding the required information in the user interface. On top of these extra
responsibilities, ViewModel also had many dependencies on the different data sources;
this means that a change in the networking or persistence libraries would require a change
in ViewModel. To solve this problem, our code would need to be split into separate layers
with different responsibilities. Typically, the layers would look like the following figure:

Figure 5.1 – An app architecture diagram

Introducing the app's architecture 145

In Figure 5.1, we can see that there are three layers with different responsibilities:

•	 Presentation layer: This layer is responsible for displaying data on the screen (also
known as the UI layer). This usually contains classes required for managing the user
interface and classes that will perform logic related to the user interface, such as
ViewModels.

•	 Domain layer: This layer is responsible for fetching data from the data layer and
performing business logic that can be reused across an app.

•	 Data layer: This layer is responsible for handling the business logic of an application
that deals with the managing of data.

We can apply the clean architecture principles on top of the layered architecture by
placing the domain layer at the center, as shown in Figure 5.2, and making it the place to
store our entities and use cases. At the outer layers are the presentation and data layers,
which are represented by the interface adapter layer (represented by ViewModels
and Repositories) and the framework layer (represented by the user interface and
persistence and networking frameworks):

Figure 5.2 – An app layer dependency diagram

In the preceding figure, we can see that the dependencies between the domain layer and
the data layer are inverted. The domain layer will still draw data from the data layer, but
because it has inverted dependencies, it will be less impacted by any changes to that layer,
just as if any changes occur to the presentation layer, they will not impact the domain
layer. If the app suffers from any changes to the use cases, then it will drive the changes in
both the presentation and data layer.

146 Building the Domain of an Android Application

To separate the layers, we can use Android modules. This will help us impose further
rigor on the project by avoiding unwanted dependencies between the layers. This also
helps improve build times in large applications because of Gradle build caching, which
will only rebuild modules that had code changes. This will look something like the
following figure:

Figure 5.3 – An app module diagram

We can see that there isn't a limited number of modules we need for each layer or that
we should have corresponding modules between the three layers. The expansion of each
layer can be driven by different factors such as the data sources, the uses of the app, the
technologies, and protocols used in those data sources (using REST APIs for certain
data and Bluetooth or Near-field communication for other data types). The usage of
the use cases might be another factor (such as having a certain set of use cases for use
with multiple applications). We might want to expand the presentation layer because
of how certain screens are grouped to form certain isolated features and flows inside an
application (such as a settings section of the application, or a login/sign-up flow). One
interesting aspect to note is the :app module, which has the role of combining all of
the dependencies and assembling them together. Here, we will gather all the required
dependencies and initialize them.

Introducing the app's architecture 147

An important thing to note here is that the modules aren't equivalent to the layers
themselves; data modules can have dependencies to lower-level data modules. In fact,
this situation will occur in scenarios when a module from a layer will need to have a
dependency on another module from the same layer. If we were to create a dependency
between the two, we might end up with a cyclical dependency, which is not wanted.
In that situation, we will need to create a common module between the two that will
hold the required dependencies. For example, if we want to navigate from a screen in
:presentation1 to a screen in :presentation2 or any of the other ones, we will
need to create a new module on which all of the presentation modules will depend and
which will store the data or logic required to handle the navigation. We will look at this
issue in more detail when we discuss the presentation layer.

To create a new Android Studio module, you need to right-click the project in Android
Studio, select New, and then Module, as shown in the following figure:

Figure 5.4 – Creating a new Android Studio module

148 Building the Domain of an Android Application

You will then be prompted to select the type of module, and depending on the
functionality, you can select Android Library if the module doesn't contain code from
the Android framework or Java or Kotlin Library if the module doesn't have any
dependencies to the Android framework. In the exercises that follow, we will be using
Android libraries. Once the module is created, it will already contain a set of generated
files and folders. One of the most relevant ones will be the build.gradle file. The
plugin section in the file will indicate that an Android library was created:

plugins {

 id 'com.android.library'

 …

}

If we want to add a dependency to the newly created module, we can use the following in
the app module:

dependencies {

 implementation(project(path: ":my-new-module"))

 …

}

The syntax to add a dependency to a module is similar to the syntax to add an external
dependency and it's through the Gradle implementation method. The rest indicates
that the app module will depend on another module inside the same project.

In this section, we have analyzed the layers of Android app architecture and how we can
apply clean architecture principles to these layers. In the following section, we will look at
how we can build a domain layer.

Creating the domain layer
In this section, we will discuss how to build the domain layer and what goes into it
through certain examples. Finally, we will look at an exercise in which a domain layer is
created.

Because the domain layer sits at the center of the application, it will need to have a
minimal number of dependencies. This means that the Gradle modules that form the
domain layer will need to be the most stable modules in the project. This is to avoid
causing other modules to change because of a change that occurred in a dependency that
the domain modules use. The domain should be responsible for defining the entities and
use cases for the application.

Creating the domain layer 149

Entities are represented by objects that hold data and are mainly immutable. Let's assume
we want to represent a user as an entity. We might end up with something like the
following:

data class User(

 val id: String,

 val firstName: String,

 val lastName: String,

 val email: String

) {

 fun getFullName() = "$firstName $lastName"

}

Here, we use a simple data class, and we declare all our fields immutable with the
val keyword. We also have a business logic function for this object, which will return the
full name of the user.

Next, we need to define our use cases. Because the use cases will need to get data from the
data layer, we will first need to create an abstraction for our repository, and we will end up
with the following:

interface UserRepository {

 fun getUser(id: String): User

}

Here, we just have a simple method that will return a user based on id. We can now create
a use case for retrieving the user:

class GetUserUseCase(private val userRepository:
UserRepository) {

 fun getUser(id: String) = userRepository.getUser(id)

}

In the preceding example, we define a use case to retrieve the user, which will have a
dependency on the UserRepository, which will be used to retrieve the user information.
If we look at the preceding example, we can see a bit of redundancy because the use case
doesn't have any extra logic and just returns the value of the repository. The benefit of use
cases comes when we want to combine multiple results of multiple repositories.

150 Building the Domain of an Android Application

Let's assume that we want to associate the user with a particular location, defined as
follows:

data class Location(

 val id: String,

 val userId: String,

 val lat: Double,

 val long: Double

)

Here, we just keep the latitude and longitude associated with a particular user. Now, let's
assume that we would have a repository for the different locations:

interface LocationRepository {

 fun getLocation(userId: String): Location

}

Here, we again have an abstraction of a repository with a method to get a specific location
based on userId. If we want to get a user and an associated location, we will need to
create a specific use case for this:

class GetUserWithLocationUseCase(

 private val userRepository: UserRepository,

 private val locationRepository: LocationRepository

) {

 fun getUser(id: String) =

 UserWithLocation(userRepository.getUser(id),
locationRepository.getLocation(id))

}

data class UserWithLocation(

 val user: User,

 val location: Location

)

Creating the domain layer 151

In the preceding example, we create a new entity called UserWithLocation, which
will store User and Location. UserWithLocation will then be used as a result for
the getUser method in GetUserWithLocationUseCase. This will depend on both
UserRepository and LocationRepository to fetch the relevant data.

We can further improve the use cases by handling the threading as well. Because use cases
will mainly deal with retrieving and managing data, which needs to be asynchronous, we
should handle this on a separate thread. We can use Kotlin flows to manage this, and we
might end up with something like this for the repositories:

interface UserRepository {

 fun getUser(id: String): Flow<User>

}

interface LocationRepository {

 fun getLocation(id: String): Flow<Location>

}

Here, we change the return types of the methods to a Kotlin flow, which might emit a
stream of data or a single item. Now, we can combine the different flows in the stream in
the use case:

class GetUserWithLocationUseCase(

 private val userRepository: UserRepository,

 private val locationRepository: LocationRepository

) {

 fun getUser(id: String) = combine(

 userRepository.getUser(id),

 locationRepository.getLocation(id)

) { user, location ->

 UserWithLocation(user, location)

 }.flowOn(Dispatchers.IO)

}

Here, we combine the User and Location flows into a UserWithLocation flow, and
we will execute the data fetching on the IO dispatcher.

152 Building the Domain of an Android Application

Often, when dealing with data loading and management, especially from the internet, we
can encounter different errors, which we will have to factor into our use cases. To solve
this, we can define error entities. There are many possibilities to define them, including
extending the Throwable class, defining a particular data class, a combination of the
two, or combining them with sealed classes:

sealed class UseCaseException(override val cause: Throwable?) :
Throwable(cause) {

 class UserException(cause: Throwable) :

 UseCaseException(cause)

 class LocationException(cause: Throwable) :

 UseCaseException(cause)

 class UnknownException(cause: Throwable) :

 UseCaseException(cause)

 companion object {

 fun extractException(throwable: Throwable):

 UseCaseException {

 return if (throwable is UseCaseException)

 throwable else UnknownException(throwable)

 }

 }

}

Here, we have created a sealed class that will have as subclasses a dedicated error for
each entity, plus an unknown error that will deal with errors we haven't accounted
for, and a companion method that will check a Throwable object and return
UnknownException for any Throwable that isn't UseCaseException. We will
need to make sure that the error is propagated through the flow stream, but first, we can
combine the entity for success with the entity for error to ensure that the consumer of the
use case will not need to check the type of Throwable again and make a cast. We can do
this with the following approach:

sealed class Result<out T : Any> {

 data class Success<out T : Any>(val data: T) :

Creating the domain layer 153

 Result<T>()

 class Error(val exception: UseCaseException) :

 Result<Nothing>()

}

Here, we defined a Result sealed class, which will have two subclasses for success and
error. The Success class will hold the relevant data for the use case, and the Error class
will contain the exceptions defined before. The Error class can be further expanded if
needed to hold data as well as the error if we want to display the cached or persisted data
as a placeholder. We can now modify the use case to incorporate the Result class and
the error state:

class GetUserWithLocationUseCase(

 private val userRepository: UserRepository,

 private val locationRepository: LocationRepository

) {

 fun getUser(id: String) = combine(

 userRepository.getUser(id),

 locationRepository.getLocation(id)

) { user, location ->

 Result.Success(UserWithLocation(user, location)) as

 Result<UserWithLocation>

 }.flowOn(Dispatchers.IO)

 .catch {

 emit(Result.Error(UseCaseException.

 extractException(it)))

 }

}

Here, we return Result.Success, which will hold the UserWithLocation object
if no errors occur, and add use the catch operator to emit Result.Error with
UseCaseException that occurred while fetching the data. Because these operations
will repeat for multiple use cases, we can use abstraction to create a template for how each
use case behaves and let the implementations deal with only processing the necessary
data. An example might look like the following:

abstract class UseCase<T : Any, R : Any>(private val
dispatcher: CoroutineDispatcher) {

154 Building the Domain of an Android Application

 fun execute(input: T): Flow<Result<R>> =

 executeData(input)

 .map {

 Result.Success(it) as Result<R>

 }

 .flowOn(dispatcher)

 .catch {

 emit(Result.Error(UseCaseException.

 extractException(it)))

 }

 internal abstract fun executeData(input: T): Flow<R>

}

In the preceding example, we have defined an abstract class that will contain the
execute method, which will invoke the abstract executeData method and then
map the result of that method into a Result object, followed by setting the flow on a
CoroutineDispatcher, and finally, handling the errors in the catch operator. The
implementation of this will look like the following. Note that the internal keyword for
the executeData method will only make the method accessible in the current module.
This is because we only want the execute method to be called by the users of this use
case:

class GetUserWithLocationUseCase(

 dispatcher: CoroutineDispatcher,

 private val userRepository: UserRepository,

 private val locationRepository: LocationRepository

) : UseCase<String, UserWithLocation>(dispatcher) {

 override fun executeData(input: String):

 Flow<UserWithLocation> {

 return combine(

 userRepository.getUser(input),

 locationRepository.getLocation(input)

) { user, location ->

 UserWithLocation(user, location)

 }

Creating the domain layer 155

 }

}

In this example, GetUserWithLocationUseCase will only have to deal with
returning the necessary data relevant to the use case in the executeData method. We
can use generics to bind the types of data we want the use case to process by introducing
further abstractions for the required input and output of it:

abstract class UseCase<T : UseCase.Request, R : UseCase.
Response>(private val dispatcher: CoroutineDispatcher) {

 …

 interface Request

 interface Response

}

Here, we have bound the generics in the UseCase class to two interfaces – Request and
Response. The former is represented by the input data required by the use case, and the
latter is represented by the output of the use case. The implementation will now look like
this:

class GetUserWithLocationUseCase(

 dispatcher: CoroutineDispatcher,

 private val userRepository: UserRepository,

 private val locationRepository: LocationRepository

) : UseCase<GetUserWithLocationUseCase.Request,

 GetUserWithLocationUseCase.Response>(dispatcher) {

 override fun executeData(input: Request): Flow

 <Response> {

 return combine(

 userRepository.getUser(input.userId),

 locationRepository.getLocation(input.userId)

) { user, location ->

 Response(UserWithLocation(user, location))

 }

 }

156 Building the Domain of an Android Application

 data class Request(val userId: String) : UseCase.

 Request

 data class Response(val userWithLocation:

 UserWithLocation) : UseCase.Response

}

Here, we provided the implementations for the Request and Response classes and
used them when extending from the base class. In this case, the Request and Response
classes represent data transport objects. When we create templates for use cases, it is
important to observe their evolution because as the complexity increases, the template
may become inadequate.

Often, we will have the opportunity to build a new use case from existing smaller use
cases. Let's assume that for retrieving a user and retrieving a location, we have two
separate use cases:

 class GetUserUseCase(

 dispatcher: CoroutineDispatcher,

 private val userRepository: UserRepository

) : UseCase<GetUserUseCase.Request,

 GetUserUseCase.Response>(dispatcher) {

 override fun executeData(input: Request): Flow

 <Response> {

 return userRepository.getUser(input.userId)

 .map {

 Response(it)

 }

 }

 data class Request(val userId: String) : UseCase.

 Request

 data class Response(val user: User) : UseCase.Response

}

class GetLocationUseCase(

Creating the domain layer 157

 dispatcher: CoroutineDispatcher,

 private val locationRepository: LocationRepository

) : UseCase<GetLocationUseCase.Request,

 GetLocationUseCase.Response>(dispatcher) {

 override fun executeData(input: Request): Flow

 <Response> {

 return locationRepository.getLocation(input.userId)

 .map {

 Response(it)

 }

 }

 data class Request(val userId: String) : UseCase

 .Request

 data class Response(val location: Location) : UseCase.

 Response

}

In the preceding examples, we have two classes for each use case to retrieve a user and a
location.

We can modify GetUserWithLocationUseCase to instead use the existing use cases,
like this:

class GetUserWithLocationUseCase(

 dispatcher: CoroutineDispatcher,

 private val getUserUseCase: GetUserUseCase,

 private val getLocationUseCase: GetLocationUseCase

) : UseCase<GetUserWithLocationUseCase.Request,

 GetUserWithLocationUseCase.Response>(dispatcher) {

 override fun executeData(input: Request): Flow

 <Response> {

 return combine(getUserUseCase.executeData

 (GetUserUseCase.Request(input.userId)),

 getLocationUseCase.executeData

 (GetLocationUseCase.Request(input.userId))

158 Building the Domain of an Android Application

) { userResponse, locationResponse ->

 Response(UserWithLocation(userResponse.user,

 locationResponse.location))

 }

 }

 data class Request(val userId: String) : UseCase

 .Request

 data class Response(val userWithLocation:

 UserWithLocation) : UseCase.Response

}

Here, we changed the dependencies to instead use two existing use cases instead of the
repositories, invoked the executeData method from each one, and then built a new
Response using the responses from both use cases.

In this section, we looked at how to build a domain layer with entities, use cases, and
abstractions for repositories. In the section that follows, we will look at an exercise related
to building a domain layer.

Exercise 05.01 – Building a domain layer
In this exercise, we will create a new project in Android Studio in which a new Gradle
module named domain will be created. This module will contain entities containing the
following data:

•	 User: This will have an ID of the Long type and a name, username, and email.

•	 Post: This will have an ID and a user ID as a Long type, a title, and body.

•	 Interaction: This will contain the total number of interactions with the app.

•	 Errors: This is for when posts or users cannot be loaded.

The following use cases will need to be defined for the application:

•	 Retrieving a list containing posts with user information, grouped with the
interaction data

•	 Retrieving information about a particular user based on the ID

•	 Retrieving information about a particular post based on the ID

•	 Updating the interaction data

Creating the domain layer 159

To complete this exercise, you will need to do the following:

•	 Create a new project in Android Studio.

•	 Create a mapping of all the library dependencies and the versions in the root
build.gradle file.

•	 Create the domain module in Android Studio.

•	 Create the required entities for the data and errors.

•	 Create the Result class, which will hold the success and error scenario.

•	 Create the repository abstractions to obtain the user, post, and interaction
information.

•	 Create the four required use cases.

Follow these steps to complete the exercise:

1.	 Create a new project in Android Studio and select Empty Compose Activity.
2.	 In the root build.gradle file, add the following configurations that will be used

for all the modules in the project:

buildscript {

 ext {

 javaCompileVersion = JavaVersion.VERSION_1_8

 jvmTarget = "1.8"

 defaultCompileSdkVersion = 31

 defaultTargetSdkVersion = 31

 defaultMinSdkVersion = 21

 …

}

3.	 In the same file, add the versions of the libraries that will be used by the Gradle
modules:

buildscript {

 ext {

 …

 versions = [

 androidGradlePlugin: "7.0.4",

 kotlin : "1.5.31",

 hilt : "2.40.5",

160 Building the Domain of an Android Application

 coreKtx : "1.7.0",

 appCompat : "1.4.1",

 compose : "1.0.5",

 lifecycleRuntimeKtx: "2.4.0",

 activityCompose : "1.4.0",

 material : "1.5.0",

 coroutines : "1.5.2",

 junit : "4.13.2",

 mockito : "4.0.0",

 espressoJunit : "1.1.3",

 espressoCore : "3.4.0"

]

 …

}

4.	 In the same file, add a mapping for the plugin dependencies that the entire project
will use:

buildscript {

 ext {

 …

 gradlePlugins = [

 android: "com.android.tools.build:

 gradle:${versions.

 androidGradlePlugin}",

 kotlin : "org.jetbrains.kotlin:kotlin-

 gradle-plugin:${versions.kotlin}",

 hilt : "com.google.dagger:hilt-

 android-gradle-plugin:

 ${versions.hilt}"

]

 …

}

5.	 Next, you will need to add the dependencies to the androidx libraries:

buildscript {

 ext {

Creating the domain layer 161

 …

 androidx = [

 core : "androidx.
core:core-ktx:${versions.coreKtx}",

 appCompat : "androidx.
appcompat:appcompat:${versions.appCompat}",

 composeUi : "androidx.
compose.ui:ui:${versions.compose}",

 composeMaterial : "androidx.
compose.material:material:${versions.compose}",

 composeUiToolingPreview: "androidx.
compose.ui:ui-tooling-preview:${versions.compose}",

 lifecycleRuntimeKtx : "androidx.
lifecycle:lifecycle-runtime-ktx:${versions.
lifecycleRuntimeKtx}",

 composeActivity : "androidx.
activity:activity-compose:${versions.activityCompose}"

]

 …

}

6.	 Next, add the remaining libraries for material design, dependency injection,
and tests:

buildscript {

 ext {

 …

 material = [

 material: "com.google.android.

 material:material:$

 {versions.material}"

]

 coroutines = [

 coroutinesAndroid: "org.jetbrains.

 kotlinx:kotlinx-coroutines-

 android:${versions.coroutines}"

]

 di = [

 hiltAndroid : "com.google.dagger:hilt-

162 Building the Domain of an Android Application

 android:${versions.hilt}",

 hiltCompiler: "com.google.dagger:hilt-

 compiler:${versions.hilt}"

]

 test = [

 junit :

 "junit:junit:${versions.junit}",

 coroutines: "org.jetbrains.kotlinx:

 kotlinx-coroutines-test:

 ${versions.coroutines}",

 mockito : "org.mockito.kotlin:

 mockito-kotlin:${versions.mockito}"

]

 androidTest = [

 junit : "androidx.test.ext

 :junit:${versions.espressoJunit}",

 espressoCore : "androidx.test.

 espresso:espresso-core:$

 {versions.espressoCore}",

 composeUiTestJunit: "androidx.compose.

 ui:ui-test-junit4:${versions.compose}"

]

 }

 …

}

7.	 In the same file, you will need to replace the previous mappings as plugin
dependencies:

buildscript {

 …

 dependencies {

 classpath gradlePlugins.android

 classpath gradlePlugins.kotlin

 classpath gradlePlugins.hilt

 }

}

Creating the domain layer 163

8.	 Now, you need to switch to the build.gradle file in the app module and change
the existing configurations with the ones defined in the top-level build.gradle:

android {

 compileSdk defaultCompileSdkVersion

 defaultConfig {

 …

 minSdk defaultMinSdkVersion

 targetSdk defaultTargetSdkVersion

 versionCode 1

 versionName "1.0"

 …

 }

 …

 compileOptions {

 sourceCompatibility javaCompileVersion

 targetCompatibility javaCompileVersion

 }

 kotlinOptions {

 jvmTarget = jvmTarget

 useIR = true

 }

 buildFeatures {

 compose true

 }

 composeOptions {

 kotlinCompilerExtensionVersion

 versions.compose

 }

 …

}

9.	 In the same file, you will need to replace the dependencies with the ones defined in
the top-level build.gradle file:

dependencies {

 implementation androidx.core

164 Building the Domain of an Android Application

 implementation androidx.appCompat

 implementation material.material

 implementation androidx.composeUi

 implementation androidx.composeMaterial

 implementation androidx.composeUiToolingPreview

 implementation androidx.lifecycleRuntimeKtx

 implementation androidx.composeActivity

 testImplementation test.junit

}

10.	 In Android Studio, execute Sync Project with Gradle Files command and then the
Make Project command to make sure that the project builds without any errors.

11.	 Create a new module for the project named domain, which will be an Android
library module.

12.	 In the build.gradle file of the domain module, make sure you have the
following plugins:

plugins {

 id 'com.android.library'

 id 'kotlin-android'

 id 'kotlin-kapt'

 id 'dagger.hilt.android.plugin'

}

13.	 In the same file, make sure you use the configurations defined in the top-level
build.gradle file:

android {

 compileSdk defaultCompileSdkVersion

 defaultConfig {

 minSdk defaultMinSdkVersion

 targetSdk defaultTargetSdkVersion

 …

 }

 …

 compileOptions {

 sourceCompatibility javaCompileVersion

 targetCompatibility javaCompileVersion

Creating the domain layer 165

 }

 kotlinOptions {

 jvmTarget = jvmTarget

 }

}

14.	 In the same file, you will need to add the following dependencies:

dependencies {

 implementation coroutines.coroutinesAndroid

 implementation di.hiltAndroid

 kapt di.hiltCompiler

 testImplementation test.junit

 testImplementation test.coroutines

 testImplementation test.mockito

}

15.	 Sync the project with Gradle files and build the project again to make sure that the
Gradle configuration is correct.

16.	 In the domain module, create a new package named entity.
17.	 In the entity package, create a class named Post, which will have id, userId,

title, and body:

data class Post(

 val id: Long,

 val userId: Long,

 val title: String,

 val body: String

)

18.	 In the same package, create the User class, which will have id, name, username,
and email:

data class User(

 val id: Long,

 val name: String,

 val username: String,

 val email: String

)

166 Building the Domain of an Android Application

19.	 Next, create a class named PostWithUser, which will contain the post and
user information:

data class PostWithUser(

 val post: Post,

 val user: User

)

20.	 In the same package, create a class called Interaction, which will contain the
total number of clicks:

data class Interaction(val totalClicks: Int)

21.	 Now, we need to create the error entities:

sealed class UseCaseException(cause: Throwable) :
Throwable(cause) {

 class PostException(cause: Throwable) :

 UseCaseException(cause)

 class UserException(cause: Throwable) :

 UseCaseException(cause)

 class UnknownException(cause: Throwable) :

 UseCaseException(cause)

 companion object {

 fun createFromThrowable(throwable: Throwable):

 UseCaseException {

 return if (throwable is UseCaseException)

 throwable else UnknownException(throwable)

 }

 }

}

Creating the domain layer 167

Here, we have exceptions defined for when there will be an issue with loading the
post and user information, and UnknownException, which will be emitted when
something else goes wrong.

22.	 Next, let's create the Result class, which will hold the success and error
information:

sealed class Result<out T : Any> {

 data class Success<out T : Any>(val data: T) :

 Result<T>()

 class Error(val exception: UseCaseException) :

 Result<Nothing>()

}

23.	 Now, we need to move on to defining the abstractions for the repositories, and to do
so, we create a new package named repository.

24.	 In the repository package, create an interface for managing the post data:

interface PostRepository {

 fun getPosts(): Flow<List<Post>>

 fun getPost(id: Long): Flow<Post>

}

25.	 In the same package, create an interface for managing the user data:

interface UserRepository {

 fun getUsers(): Flow<List<User>>

 fun getUser(id: Long): Flow<User>

}

26.	 In the same package, create an interface for managing the interaction data:

interface InteractionRepository {

 fun getInteraction(): Flow<Interaction>

168 Building the Domain of an Android Application

 fun saveInteraction(interaction: Interaction):

 Flow<Interaction>

}

27.	 Now, we move on to the use cases and start by creating a new package named
usecase.

28.	 In this package, create the UseCase template:

abstract class UseCase<I : UseCase.Request, O : UseCase.
Response>(private val configuration: Configuration) {

 fun execute(request: I) = process(request)

 .map {

 Result.Success(it) as Result<O>

 }

 .flowOn(configuration.dispatcher)

 .catch {

 emit(Result.Error(UseCaseException.

 createFromThrowable(it)))

 }

 internal abstract fun process(request: I): Flow<O>

 class Configuration(val dispatcher:

 CoroutineDispatcher)

 interface Request

 interface Response

}

In this template, we have defined the data transfer objects' abstraction, as well
as a Configuration class that holds CoroutineDispatcher. The reason
for this Configuration class is to be able to add other parameters for the
use case without modifying the UseCase subclasses. We have one abstract
method, which will be implemented by the subclasses to retrieve the data from the
repositories, and the execute method, which will take the data and convert it to
Result, handle the error scenarios, and set the proper CoroutineDispatcher.

Creating the domain layer 169

29.	 In the usecase package, create the use case to retrieve the list of posts with the
user information and the interaction data:

class GetPostsWithUsersWithInteractionUseCase @Inject
constructor(

 configuration: Configuration,

 private val postRepository: PostRepository,

 private val userRepository: UserRepository,

 private val interactionRepository:

 InteractionRepository

) : GetPostsWithUsersWithInteractionUseCase

 GetPostsWithUsersWithInteractionUseCase {

 override fun process(request: Request):

 Flow<Response> =

 combine(

 postRepository.getPosts(),

 userRepository.getUsers(),

 interactionRepository.getInteraction()

) { posts, users, interaction ->

 val postUsers = posts.map { post ->

 val user = users.first {

 it.id == post.userId

 }

 PostWithUser(post, user)

 }

 Response(postUsers, interaction)

 }

 object Request : UseCase.Request

 data class Response(

 val posts: List<PostWithUser>,

 val interaction: Interaction

) : UseCase.Response

}

170 Building the Domain of an Android Application

In this class, we extend the UseCase class, and in the process method, we
combine the posts, users, and interaction flows. Because there is no input required,
the Request class will have to be empty, and the Response class will contain
a list of combined user and post information as well as the interaction data. The
@Inject annotation will help us inject this use case later in the presentation layer.

30.	 In the same package, create the use case to retrieve a post by ID:

class GetPostUseCase @Inject constructor(

 configuration: Configuration,

 private val postRepository: PostRepository

) : UseCase<GetPostUseCase.Request,

 GetPostUseCase.Response>(configuration) {

 override fun process(request: Request): Flow

 <Response> =

 postRepository.getPost(request.postId)

 .map {

 Response(it)

 }

 data class Request(val postId: Long) : UseCase.

 Request

 data class Response(val post: Post) : UseCase.

 Response

}

31.	 In the same package, create the use case to retrieve a user by ID:

class GetUserUseCase @Inject constructor(

 configuration: Configuration,

 private val userRepository: UserRepository

) : UseCase<GetUserUseCase.Request,

 GetUserUseCase.Response>(configuration) {

 override fun process(request: Request): Flow

 <Response> =

 userRepository.getUser(request.userId)

 .map {

Creating the domain layer 171

 Response(it)

 }

 data class Request(val userId: Long) : UseCase.

 Request

 data class Response(val user: User) : UseCase.

 Response

}

32.	 Now, we move on to the last use case for updating the interaction data:

class UpdateInteractionUseCase @Inject constructor(

 configuration: Configuration,

 private val interactionRepository:

 InteractionRepository

) : UseCase<UpdateInteractionUseCase.Request,

 UpdateInteractionUseCase.Response>(configuration) {

 override fun process(request: Request): Flow

 <Response> {

 return interactionRepository.saveInteraction

 (request.interaction)

 .map {

 Response

 }

 }

 data class Request(val interaction: Interaction) :

 UseCase.Request

 object Response : UseCase.Response

}

33.	 To unit-test the code, we need to create a new folder called resources in the
test folder of the domain module.

172 Building the Domain of an Android Application

34.	 Inside the resources folder, create a subfolder called mockito-extensions;
inside this folder, create a file named org.mockito.plugins.MockMaker; and
inside this file, add the following text – mock-maker-inline. This allows the
Mockito testing library to mock the final Java class, which in Kotlin means all
classes without the open keyword.

35.	 Create a new class named UseCaseTest in the test folder of the domain module:

class UseCaseTest {

 @ExperimentalCoroutinesApi

 private val configuration = UseCase.Configuration

 (TestCoroutineDispatcher())

 private val request = mock<UseCase.Request>()

 private val response = mock<UseCase.Response>()

 @ExperimentalCoroutinesApi

 private lateinit var useCase:

 UseCase<UseCase.Request, UseCase.Response>

 @ExperimentalCoroutinesApi

 @Before

 fun setUp() {

 useCase = object : UseCase<UseCase.Request,

 UseCase.Response>(configuration) {

 override fun process(request: Request):

 Flow<Response> {

 assertEquals(this@UseCaseTest.request,

 request)

 return flowOf(response)

 }

 }

 }

}

Here, we provide an implementation for the UseCase class, which will return a
mocked response.

Creating the domain layer 173

36.	 Next, create a test method that will verify the successful scenario for the execute
method:

 @ExperimentalCoroutinesApi

 @Test

 fun testExecuteSuccess() = runBlockingTest {

 val result = useCase.execute(request).first()

 assertEquals(Result.Success(response), result)

 }

Here, we assert that the result of the execute method is Success and that it
contains the mocked response.

37.	 Next, create a new test class named
GetPostsWithUsersWithInteractionUseCaseTest:

class GetPostsWithUsersWithInteractionUseCaseTest {

 private val postRepository = mock<PostRepository>()

 private val userRepository = mock<UserRepository>()

 private val interactionRepository =
mock<InteractionRepository>()

 private val useCase =
GetPostsWithUsersWithInteractionUseCase(

 mock(),

 postRepository,

 userRepository,

 interactionRepository

)

}

Here, we mock all the repositories and inject the mocks into the class we want to test.
38.	 Finally, create a test method that will verify the process method from the use case

we are testing:

 @ExperimentalCoroutinesApi

 @Test

 fun testProcess() = runBlockingTest {

 val user1 = User(1L, "name1", "username1",
"email1")

 val user2 = User(2L, "name2", "username2",

174 Building the Domain of an Android Application

"email2")

 val post1 = Post(1L, user1.id, "title1", "body1")

 val post2 = Post(2L, user1.id, "title2", "body2")

 val post3 = Post(3L, user2.id, "title3", "body3")

 val post4 = Post(4L, user2.id, "title4", "body4")

 val interaction = Interaction(10)

 whenever(userRepository.getUsers()).thenReturn

 (flowOf(listOf(user1, user2)))

 whenever(postRepository.getPosts()).thenReturn

 (flowOf(listOf(post1, post2, post3, post4)))
whenever(interactionRepository.getInteraction

 ()).thenReturn(flowOf(interaction))

 val response = useCase.process

 (GetPostsWithUsersWithInteractionUseCase.

 Request).first()

 assertEquals(

 GetPostsWithUsersWithInteractionUseCase.

 Response(

 listOf(

 PostWithUser(post1, user1),

 PostWithUser(post2, user1),

 PostWithUser(post3, user2),

 PostWithUser(post4, user2),

), interaction

),

 response

)

 }

Here, we provide mock lists of users and posts and a mock interaction, then we
return these for each of the repository calls, and then we assert that the result is a
list of four posts, written by two users and the mock interaction.

If we run the tests for these two methods, they should pass. To test the remaining use
cases, the same principles can be applied that we used for GetPostsWithUsersWith-
InteractionUseCaseTest – create mock repositories, inject them into the object
we wish to test, and then define the mocks for the input of the process method and the
results we should expect, which will give us output as shown in the following screenshot:

Summary 175

Figure 5.5 – Output of the use case unit tests

In this section, we performed an exercise in which we created a simple domain that
contained entities, a few simple use cases, and a particular use case that combined
multiple data sources. The domain module has dependencies on flows and Hilt. This
means that changes to these libraries might cause changes to our domain module. This
decision was made because of the benefits that these libraries provide when it comes to
reactive programming and dependency injection. Because we considered dependency
injection when defining the use cases, this made them more testable, as we could inject
mock objects into the tested objects very easily.

Summary
In this chapter, we looked at how the architecture of an Android app is layered and
focused on the domain layer, discussing the topics of entities and use cases. We also
learned how to use dependency inversion to place use cases and entities at the center of
our architecture. We did this by creating repository abstractions that can be implemented
in the lower layers. We also learned how to use library modules to enforce separations
between layers.

In the chapter's exercise, we created a domain module for an Android application,
providing an example of what a domain layer might look like. In the next chapter, we
will focus on the data layer, in which we will provide implementations for the repository
abstractions we defined in the domain layer, and discuss how we can use these repositories
to manage an application's data.

6
Assembling

a Repository
In this chapter, we will begin by discussing the application's data layer and the
components that make up this layer, including repositories and data sources. We will
then move on to the topic of repositories, one of the application layer's components,
and the role they play in managing the data of an application. In this chapter's exercise,
we will continue the project started in the previous chapter by providing the repository
implementations for the abstractions defined there and also introducing new abstractions
for the different types of data sources.

In this chapter, we will cover the following topics:

•	 Creating the data layer

•	 Creating repositories

By the end of the chapter, you will have learned what the data layer is and how we can
create repositories for an Android application.

178 Assembling a Repository

Technical requirements
The hardware and software requirements are as follows:

•	 Android Studio Arctic Fox 2020.3.1 Patch 3

The code files for this chapter can be found here: https://github.com/
PacktPublishing/Clean-Android-Architecture/tree/main/Chapter6.

Check out the following video to see the Code in Action: https://bit.ly/3NpAhNs

Creating the data layer
In this section, we will look at the data layer of an Android application and the
components that typically form part of the data layer.

The data layer is the layer in which data is created and managed. This means that this layer
is responsible for creating, reading, updating, and deleting data, as well as for managing
and ensuring that data from the internet is synced with persistent data.

In the previous chapter, we have seen that use cases depend on an abstraction of
a repository class, and there can be multiple repositories for different data types.
Repositories represent the entry point into the data layer and are responsible for managing
multiple data sources and centralizing the data. The data sources represent the other
component of the data layer and are responsible for managing the data of a particular
source (internet, Room, data store, and suchlike).

An example of what the data layer for a particular set of data, which uses two data sources,
might look like is shown in the following figure:

Creating the data layer 179

Figure 6.1 – Data layer example

In the preceding diagram, we have an example of what a data layer would look like
when it is connected to the domain layer. We can observe that the UseCase class
depends on a Repository abstraction, which represents the domain layer. The
data layer is represented by RepositoryImpl, which is the implementation of the
Repository abstraction. The RepositoryImpl class depends on the two data source
implementations: RemoteDataSourceImpl and LocalDataSourceImpl. Each data
source then depends on a particular implementation for managing data from the internet
using Retrofit in the case of RetrofitService, or using a particular data access class
that uses Room in the case of DbDao.

180 Assembling a Repository

This approach poses a problem owing to the direct dependency between
RepositoryImpl and RemoteDataSourceImpl, and the problem arises when
we might want to swap out Retrofit or Room for alternatives. If we might want to swap
out these libraries for others, we risk changes in the RepositoryImpl class, which
violates the single-responsibility principle. The solution for this is like the solution we had
for solving the dependencies between the use cases and the repositories, and that is to
invert the dependencies between the repository and the data sources. This would look like
the following:

Figure 6.2 – Data layer with inverted dependencies

In the preceding diagram, we have introduced two abstractions for each data source,
named RemoteDataSource and LocalDataSource. RepositoryImpl now
depends on these two abstractions and all the conversions between Retrofit- or Room-
related objects and domain entities should now be placed in RemoteDataSourceImpl
or LocalDataSourceImpl, which inherit the new abstractions and will continue to
handle the data from Retrofit or Room. If we want to split the data layer into different
Gradle modules, we will have the following:

Creating repositories 181

Figure 6.3 – Data layer modules

The preceding diagram shows the Gradle module dependencies between the repository
and local and remote data sources. Here we can see the benefit of dependency inversion,
which allows us to have a separate repository module without depending on Retrofit
or Room.

In this section, we have discussed the data layer and the components inside it and how to
manage the dependencies between all the components. In the following section, we will
take a closer look at repositories and how to implement them.

Creating repositories
In this section, we will look at what a repository is and the role it plays in the data layer of
an application, and how we can create repositories with various data sources.

The repository represents an abstraction for the data than an application uses, and it is
responsible for managing and centralizing the data from one or multiple data sources.

In the previous chapter, we defined the following entity:

data class User(

 val id: String,

 val firstName: String,

 val lastName: String,

 val email: String

) {

 fun getFullName() = "$firstName $lastName"

}

182 Assembling a Repository

Here we have a simple User data class with a few relevant fields. The repository
abstraction for the User data is as follows:

interface UserRepository {

 fun getUser(id: String): Flow<User>

}

Here we have an interface named UserRepository that is responsible for fetching the
user information in a Kotlin flow.

If we want to fetch data from the internet, we must first define a
UserRemoteDataSource abstraction:

interface UserRemoteDataSource {

 fun getUser(id: String): Flow<User>

}

In this case, we have an interface similar to how UserRepository is defined with a
simple method to retrieve a User object. We can now implement UserRepository to
use this data source:

class UserRepositoryImpl(private val userRemoteDataSource:

 UserRemoteDataSource) : UserRepository {

 override fun getUser(id: String): Flow<User> =

 userRemoteDataSource.getUser(id)

}

Here we have a dependency on UserRemoteDataSource and invoke the getUser
method. If we want to persist the remote user data locally, we will need to define
a UserLocalDataSource abstraction, which will be responsible for inserting the user:

interface UserLocalDataSource {

 suspend fun insertUser(user: User)

}

Creating repositories 183

Here we have a method for inserting a user into the local store. We can now update
UserRepositoryImpl to connect the data sources and insert a user after it was
retrieved:

class UserRepositoryImpl(

 private val userRemoteDataSource: UserRemoteDataSource,

 private val userLocalDataSource: UserLocalDataSource

) : UserRepository {

 override fun getUser(id: String): Flow<User> =

 userRemoteDataSource.getUser(id)

 .onEach {

 userLocalDataSource.insertUser(it)

 }

}

This represents a simple use case for data sources, but we can use repositories to
improve the user experience for the user. For instance, we can change the repository
implementation to return the saved data and have a separate method for fetching the data
remotely. We can take advantage of flows, which can emit multiple users in a stream:

interface UserLocalDataSource {

 suspend fun insertUser(user: User)

 fun getUser(id: String): Flow<User>

}

In the preceding example, we have added the getUser method to retrieve a User object,
which was persisted locally. We will need to modify the repository abstraction as follows:

interface UserRepository {

 fun getUser(id: String): Flow<User>

 fun refreshUser(id: String): Flow<User>

}

184 Assembling a Repository

Here, we have added the refreshUser method, which, when implemented, will
be responsible for fetching a new user from the internet. The implementation will be
as follows:

class UserRepositoryImpl(

 private val userRemoteDataSource: UserRemoteDataSource,

 private val userLocalDataSource: UserLocalDataSource

) : UserRepository {

 override fun getUser(id: String): Flow<User> =

 userLocalDataSource.getUser(id)

 override fun refreshUser(id: String): Flow<User> =

 userRemoteDataSource.getUser(id)

 .onEach {

 userLocalDataSource.insertUser(it)

 }

}

Here, we return the persisted user in the getUser method and, in the refreshUser
method, we now fetch the remote data and insert it locally. If we are using libraries such
as Room, this will trigger the emission of a new User object, which will come from
UserLocalDataSource. This means that all subscribers of the getUser method will
be notified of a change and receive a new User object.

We can also use repositories for caching data in the memory. An example of this would be
as follows:

class UserRepositoryImpl(

 private val userRemoteDataSource: UserRemoteDataSource,

 private val userLocalDataSource: UserLocalDataSource

) : UserRepository {

 private val usersFlow = MutableStateFlow

 (emptyMap<String, User>().toMutableMap())

 override fun getUser(id: String): Flow<User> =

 usersFlow.flatMapLatest {

Creating repositories 185

 val user = it[id]

 if (user != null) {

 flowOf(user)

 } else {

 userLocalDataSource.getUser(id)

 .onEach { persistedUser ->

 saveUser(persistedUser)

 }

 }

 }

 override fun refreshUser(id: String): Flow<User> =

 userRemoteDataSource.getUser(id)

 .onEach {

 saveUser(it)

 userLocalDataSource.insertUser(it)

 }

 private fun saveUser(user: User) {

 val map = usersFlow.value

 map[user.id] = user

 usersFlow.value = map

 }

}

Here, we have added a new MutableStateFlow object, which will hold a map in which
the keys are represented by the user IDs and the values are the users. In the getUser
method, we check whether the user is stored in memory and return the memory value if
present, otherwise we get the persisted data, which we will store in memory after. In the
refreshUser method, we persist the value in memory and persist the data locally.

Because we defined the repository abstraction to return entities, we should try as much as
possible to use entities across the repository and the data source abstractions. However,
we might need specific object definitions to handle processing the data from the data
sources. We can define these specific classes in this layer and then convert them to entities
in the repository implementation.

186 Assembling a Repository

In this section, we have seen how we can create repositories and how they can be used to
manage data in an application. In the section that follows, we will look at an exercise in
which we will create repositories for an application.

Exercise 06.01 – Creating repositories
Modify Exercise 05.01: Building a domain layer, so that a new library module is created
in Android Studio. The module will be named data-repository and will have a
dependency on the domain module. In this module, we will implement the repository
classes from the domain module as follows:

•	 UserRepositoryImpl will have dependencies on the following data sources:
UserRemoteDataSource, which will fetch a list and a user by ID, and
UserLocalDataSource, which will have methods for inserting a list of users and
obtaining a list of the same. UserRepositoryImpl will always load the remote
users and insert them locally.

•	 PostRepositoryImpl will have dependencies on the following data sources:
PostRemoteDataSource, which will fetch a list of users and a user by ID, and
PostLocalDataSource, which will have methods for inserting a list of posts and
obtaining a list of the same. PostRepositoryImpl will always load the remote
posts and insert them locally.

•	 InteractionRepositoryImpl will have a dependency on a single data
source, LocalInteractionDataSource, which will be responsible for loading
an interaction and saving it. InteractionRepositoryImpl will load the
interaction and save a new interaction.

To complete this exercise, you will need to do the following:

•	 Create the data repository module in Android Studio

•	 Create the user's data sources and repository

•	 Create the post's data sources and repository

•	 Create the interaction data source and repository

Follow these steps to complete the exercise:

1.	 Create a new module named data-repository, which will be an Android
Library module.

2.	 Make sure that in the top-level build.gradle file, the following dependencies
are set:

buildscript {

Creating repositories 187

 …

 dependencies {

 classpath gradlePlugins.android

 classpath gradlePlugins.kotlin

 classpath gradlePlugins.hilt

 }

}

3.	 In the build.gradle file of the data-repository module, make sure that the
following plugins are present:

plugins {

 id 'com.android.library'

 id 'kotlin-android'

 id 'kotlin-kapt'

 id 'dagger.hilt.android.plugin'

}

4.	 In the same file, change the configurations to the ones defined in the top-level
build.gradle file:

android {

 compileSdk defaultCompileSdkVersion

 defaultConfig {

 minSdk defaultMinSdkVersion

 targetSdk defaultTargetSdkVersion

 …

 }

 …

 compileOptions {

 sourceCompatibility javaCompileVersion

 targetCompatibility javaCompileVersion

 }

 kotlinOptions {

 jvmTarget = jvmTarget

 }

}

188 Assembling a Repository

5.	 In the same file, make sure that the following dependencies are specified:

dependencies {

 implementation(project(path: ":domain"))

 implementation coroutines.coroutinesAndroid

 implementation di.hiltAndroid

 kapt di.hiltCompiler

 testImplementation test.junit

 testImplementation test.coroutines

 testImplementation test.mockito

}

Here, we are using the implementation method to add a dependency to the
:domain module, in the same way as other libraries are referenced. In Gradle we
also have the option of using the api method. This makes a module's dependencies
public to other modules. This, in turn, might have potential side effects, such as
leaking dependencies that should be kept private. In this example, we might be
better served by using the api method for the :domain module because of the
close relationship between the two modules (which would make all modules that
depend on :data-repository not have to add the dependency to :domain).
However, dependencies such as Hilt and Coroutines should be kept with the
implementation method because we would want to avoid exposing these libraries in
modules that do not use them.

6.	 In the data-repository module, create a new package named data_source.
7.	 In the data_source package, create a new package named remote.
8.	 In the remote package, create the RemoteUserDataSource interface:

interface RemoteUserDataSource {

 fun getUsers(): Flow<List<User>>

 fun getUser(id: Long): Flow<User>

}

9.	 In the remote package, create the RemotePostDataSource interface:

interface RemotePostDataSource {

 fun getPosts(): Flow<List<Post>>

Creating repositories 189

 fun getPost(id: Long): Flow<Post>

}

10.	 In the data_source package, create a new package called local.
11.	 In the local package, create the LocalUserDataSource interface:

interface LocalUserDataSource {

 fun getUsers(): Flow<List<User>>

 suspend fun addUsers(users: List<User>)

}

12.	 In the local package, create the LocalPostDataSource interface:

interface LocalPostDataSource {

 fun getPosts(): Flow<List<Post>>

 suspend fun addPosts(posts: List<Post>)

}

13.	 In the local package, create the LocalInteractionDataSource package:

interface LocalInteractionDataSource {

 fun getInteraction(): Flow<Interaction>

 suspend fun saveInteraction(interaction: Interaction)

}

14.	 Next to the data_source package, create a new package named repository.
15.	 In the repository package, create the UserRepositoryImpl class:

class UserRepositoryImpl @Inject constructor(

 private val remoteUserDataSource:

 RemoteUserDataSource,

 private val localUserDataSource:

 LocalUserDataSource

190 Assembling a Repository

) : UserRepository {

 override fun getUsers(): Flow<List<User>> =

 remoteUserDataSource.getUsers()

 .onEach {

 localUserDataSource.addUsers(it)

 }

 override fun getUser(id: Long): Flow<User> =
remoteUserDataSource.getUser(id)

 .onEach {

 localUserDataSource.addUsers(listOf(it))

 }

}

Here, we fetch the user data from the remote data source and store it locally.
16.	 In the same package, create the PostRepositoryImpl class:

class PostRepositoryImpl @Inject constructor(

 private val remotePostDataSource:

 RemotePostDataSource,

 private val localPostDataSource:

 LocalPostDataSource

) : PostRepository {

 override fun getPosts(): Flow<List<Post>> =

 remotePostDataSource.getPosts()

 .onEach {

 localPostDataSource.addPosts(it)

 }

 override fun getPost(id: Long): Flow<Post> =

 remotePostDataSource.getPost(id)

 .onEach {

 localPostDataSource.addPosts(listOf(it))

 }

}

Creating repositories 191

Here, we are fetching the post data from the remote data source and using the local
data source to persist the data.

17.	 In the same package, create the InteractionRepositoryImpl class:

class InteractionRepositoryImpl @Inject constructor(

 private val interactionDataSource:

 LocalInteractionDataSource

) : InteractionRepository {

 override fun getInteraction(): Flow<Interaction> =

 interactionDataSource.getInteraction()

 override fun saveInteraction(interaction:

 Interaction): Flow<Interaction> = flow {

 interactionDataSource.saveInteraction(interaction)

 this.emit(Unit)

 }.flatMapLatest {

 getInteraction()

 }

}

Here, we are just interacting with the local data source to read and store the data.
18.	 We now want to use Hilt to bind the repository abstraction with the

implementation, so we will need to create a package named injection next to the
data_source and repository packages.

19.	 Inside the injection package, create a class named RepositoryModule:

@Module

@InstallIn(SingletonComponent::class)

abstract class RepositoryModule {

 @Binds

 abstract fun bindPostRepository(postRepositoryImpl

 : PostRepositoryImpl): PostRepository

 @Binds

 abstract fun bindUserRepository

 (userRepositoryImpl: UserRepositoryImpl):

192 Assembling a Repository

 UserRepository

 @Binds

 abstract fun bindInteractionRepository

 (interactionRepositoryImpl:

 InteractionRepositoryImpl):

 InteractionRepository

}

Here, we are using the @Binds Hilt annotation, which maps the implementation of
a repository annotated with @Inject with the abstraction.

20.	 To unit test the code, we will now need to create a new folder called resources in
the test folder of the data-repository module.

21.	 Inside the resources folder, create a folder called mockito-extensions and,
inside this folder, create a file named org.mockito.plugins.MockMaker, and,
inside this file, add the following text: mock-maker-inline.

22.	 Create a UserRepositoryImplTest class for unit testing the
UserRepositoryImpl methods:

class UserRepositoryImplTest {

 private val remoteUserDataSource =

 mock<RemoteUserDataSource>()

 private val localUserDataSource =

 mock<LocalUserDataSource>()

 private val repositoryImpl = UserRepositoryImpl

 (remoteUserDataSource, localUserDataSource)

}

23.	 In the UserRepositoryImplTest class, add a test method for each repository
method:

class UserRepositoryImplTest {

 …

 @ExperimentalCoroutinesApi

 @Test

 fun testGetUsers() = runBlockingTest {

Creating repositories 193

 val users = listOf(User(1, "name", "username",

 "email"))

 whenever(remoteUserDataSource.getUsers()).

 thenReturn(flowOf(users))

 val result = repositoryImpl.getUsers().first()

 assertEquals(users, result)

 verify(localUserDataSource).addUsers(users)

 }

 @ExperimentalCoroutinesApi

 @Test

 fun testGetUser() = runBlockingTest {

 val id = 1L

 val user = User(id, "name", "username",

 "email"

)

 whenever(remoteUserDataSource.getUser(id))

 .thenReturn(flowOf(user))

 val result = repositoryImpl.getUser(id).

 first()

 assertEquals(user, result)

 verify(localUserDataSource).
addUsers(listOf(user))

 }

}

In this class, we unit test each of the methods in the UserRepositoryImpl
class by mocking the local data and remote data sources and verifying that the data
obtained from the remote data source is inserted into the local data source.

24.	 Create a PostRepositoryImplTest class to test the PostRepositoryImpl
class:

class PostRepositoryImplTest {

 private val remotePostDataSource =

 mock<RemotePostDataSource>()

 private val localPostDataSource =

194 Assembling a Repository

 mock<LocalPostDataSource>()

 private val repositoryImpl = PostRepositoryImpl

 (remotePostDataSource, localPostDataSource)

}

25.	 Create unit tests for each of the methods in the PostRepositoryImpl class:

class PostRepositoryImplTest {

 …

 @ExperimentalCoroutinesApi

 @Test

 fun testGetPosts() = runBlockingTest {

 val posts = listOf(Post(1, 1, "title",

 "body"))

 whenever(remotePostDataSource.getPosts())

 .thenReturn(flowOf(posts))

 val result = repositoryImpl.getPosts().first()

 Assert.assertEquals(posts, result)

 verify(localPostDataSource).addPosts(posts)

 }

 @ExperimentalCoroutinesApi

 @Test

 fun testGetPost() = runBlockingTest {

 val id = 1L

 val post = Post(id, 1, "title", "body")

 whenever(remotePostDataSource.getPost(id)).
thenReturn(flowOf(post))

 val result =

 repositoryImpl.getPost(id).first()

 Assert.assertEquals(post, result)

 verify(localPostDataSource).
addPosts(listOf(post))

 }

}

In this class, we perform the same tests that we did for UserRepositoryImpl.

Creating repositories 195

26.	 Create an InteractionRepositoryImplTest class to test the
InteractionRepositoryImpl class:

class InteractionRepositoryImplTest {

 private val localInteractionDataSource =

 mock<LocalInteractionDataSource>()

 private val repositoryImpl =

 InteractionRepositoryImpl

 (localInteractionDataSource)

}

27.	 Create unit tests for each of the methods in the InteractionRepositoryImpl
class:

class InteractionRepositoryImplTest {

 …

 @ExperimentalCoroutinesApi

 @Test

 fun testGetInteraction() = runBlockingTest {

 val interaction = Interaction(10)

 whenever(localInteractionDataSource.

 getInteraction()).

 thenReturn(flowOf(interaction))

 val result = repositoryImpl.getInteraction()

 .first()

 assertEquals(interaction, result)

 }

 @ExperimentalCoroutinesApi

 @Test

 fun testSaveInteraction() = runBlockingTest {

 val interaction = Interaction(10)

 whenever(localInteractionDataSource.

 getInteraction()).thenReturn

 (flowOf(interaction))

 val result = repositoryImpl.saveInteraction

 (interaction).first()

196 Assembling a Repository

 veriy(localInteractionDataSource).

 saveInteraction(interaction)

 assertEquals(interaction, result)

 }

}

In this class, we mock the local data source and then we verify that the repository
has the appropriate invocations on the LocalInteractionDataStore mock.

If we run the tests, we should see something like the following screenshot:

Figure 6.4 – Output of the repository unit tests

In this exercise, we have created a new module in which we implemented our repositories
and defined new abstractions for the data sources that the repositories will use. Here, we
have continued the integration with other libraries, such as Hilt for dependency injection,
and Kotlin flows to handle the data in a reactive approach. The use of dependency
injection made the unit tests simple to write because we could easily provide mocks.

Summary
In this chapter, we started looking into the data layer of an Android application and
provided an overview of the components that are part of this layer. We also looked at the
Repository component, which is responsible for managing the data provided by one or
more data sources, and provided examples of how we could build different repositories.
We also looked at the relationship between repositories and data sources and how we can
further decouple the components with dependency inversion, to keep our repositories
unaffected by changes in libraries used to fetch data. Finally, we looked at an exercise
on how we can build repositories with local and remote data sources. In the following
chapter, we will continue with the data layer and how we can integrate the remote and
local data sources with libraries such as Room and Retrofit.

7
Building Data

Sources
In this chapter, we will continue focusing on the data layer by discussing how we can
implement local and remote data sources and the roles they play in clean architecture.
First, we will look at how remote data sources can be built and how they can fetch data
from the internet through calls to Retrofit. Then, we will look at implementing local data
sources and how they can interact with Room and Data Store to persist data locally. In
the chapter's exercises, we will continue the previous exercises and add the data sources
discussed in the chapter, seeing how we can connect them to Room and Retrofit.

In this chapter, we will cover the following topics:

•	 Building and using remote data sources

•	 Building and integrating local data sources

By the end of the chapter, you will have learned the role of data sources, how to implement
remote and local data sources that use Retrofit, Room, and Data Store to manage an
application's data, and how we can separate these data sources in separate library modules.

198 Building Data Sources

Technical requirements
The hardware and software requirements are as follows:

•	 Android Studio – Arctic Fox | 2020.3.1 Patch 3

The code files for this chapter can be found here: https://github.com/
PacktPublishing/Clean-Android-Architecture/tree/main/Chapter7.

Check out the following video to see the Code in Action: https://bit.ly/3yOa7jE

Building and using remote data sources
In this section, we will look at how we can build remote data sources and how we can use
them in combination with Retrofit to fetch and manipulate data from the internet.

In the previous chapters, we defined abstractions for data sources that repositories
depend on to manipulate data. This was because we wanted to avoid the repositories
having dependencies on the data sources and instead have the data sources depend on the
repositories. For remote data sources, this looks something like the following figure:

Figure 7.1 – A remote data source class diagram

Building and using remote data sources 199

The implementation of the remote data source has two roles. It will invoke the networking
layer to fetch and manipulate data, and it will convert the data to either the domain entity
or, if necessary, intermediary data required by the repository.

Let's look at the entity defined in the previous chapters:

data class User(

 val id: String,

 val firstName: String,

 val lastName: String,

 val email: String

) {

 fun getFullName() = "$firstName $lastName"

}

Here, we have the same User data class that was defined as part of the domain. Now let's
assume we are fetching the following data from the internet in JSON format:

data class UserApiModel(

 @Json(name = "id") val id: String,

 @Json(name = "first_name") val firstName: String,

 @Json(name = "last_name") val lastName: String,

 @Json(name = "email") val email: String

)

Here, we have a UserApiModel class in which we define the same fields as the User
class and annotate them with the @Json annotation, which is part of the Moshi library.

The remote data source abstraction looks like the following:

interface UserRemoteDataSource {

 fun getUser(id: String): Flow<User>

}

This is the abstraction we defined in the previous chapter. Before we write the
implementation of this class, we will first need to specify our Retrofit service:

interface UserService {

 @GET("/users/{userId}")

200 Building Data Sources

 suspend fun getUser(@Path("userId") userId: String):

 UserApiModel

}

This is a typical Retrofit service class, which will fetch an UserApiModel class from the
/users/{userId} endpoint. We can now create the implementation of the data source
to fetch the user from UserService:

data class UserRemoteDataSourceImpl(private val userService:
UserService) : UserRemoteDataSource {

 override fun getUser(id: String): Flow<User> {

 return flow {

 emit(userService.getUser(id))

 }.map {

 User(it.id, it.firstName, it.lastName,

 it.email)

 }

 }

}

Here, we implement the UserRemoteDataSource interface, and in the getUser
method, we invoke the getUser method from the UserService dependency. Once
UserApiModel is obtained, we then convert it to the User class.

In this section, we looked at how we can build a remote data source with the help of the
Retrofit library to manipulate data from the internet. In the section that follows, we will
look at an exercise that shows how we can implement a remote data source.

Exercise 07.01 – Building a remote data source
Modify Exercise 06.01 – Creating repositories so that a new library module is created in
Android Studio. Name the module data-remote. This module will depend on domain
and data-repository. The module will be responsible for fetching users and posts as
JSON from https://jsonplaceholder.typicode.com/.

The user will have the following JSON representation:

{

 "id": 1,

 "name": "Leanne Graham",

 "username": "Bret",

Building and using remote data sources 201

 "email": "Sincere@april.biz"

}

The post will have the following JSON representation:

{

 "userId": 1,

 "id": 1,

 "title": "sunt aut facere repellat provident

 occaecati excepturi optio reprehenderit",

 "body": "quia et suscipit\nsuscipit recusandae consequuntur
expedita et cum\nreprehenderit molestiae ut ut quas totam\
nnostrum rerum est autem sunt rem eveniet architecto"

}

The module will need to implement the following:

•	 UserApiModel and PostApiModel, which will hold the data from the JSON.

•	 UserService, which will return a list of UserApiModel from the /users URL
and UserApiModel based on the ID from the /users/{userId} URL.

•	 PostService, which will return a list of PostApiModel from the /posts URL
and PostApiModel based on the ID from the /post/{postId} URL.

•	 RemoteUserDataSourceImpl, which will implement
RemoteUserDataSource, call UserService, and return Flow, which emits
a list of User objects or UseCaseException.UserException if there is an
error in the call to UserService. The same approach will be taken for returning
User based on the ID.

•	 RemotePostDataSourceImpl which will implement
RemotePostDataSource, call PostService, and return Flow, which emits
a list of Post objects or UseCaseException.PostException if there is an
error in the call to PostService. The same approach will be taken for returning a
post based on the ID.

To complete this exercise, you will need to do the following:

1.	 Create the data-remote module.
2.	 Create the UserApiModel and UserService classes.
3.	 Create the PostApiModel and PostService classes.
4.	 Create the remote data sources implementations for RemoteUserDataSource

and RemotePostDataSource.

202 Building Data Sources

Follow these steps to complete the exercise:

1.	 Create a new module named data-remote, which will be an Android library
module.

2.	 Make sure that in the top-level build.gradle file, the following dependencies are
set:

buildscript {

 …

 dependencies {

 classpath gradlePlugins.android

 classpath gradlePlugins.kotlin

 classpath gradlePlugins.hilt

 }

}

3.	 In the same file, add the networking libraries to the library mappings:

 ext {

 …

 versions = [

 …

 okHttp : "4.9.0",

 retrofit : "2.9.0",

 moshi : "1.13.0",

 …

]

 …

 network = [

 okHttp : "com.squareup.okhttp3:

 okhttp:${versions.okHttp}",

 retrofit : "com.squareup.retrofit2

 :retrofit:${versions.retrofit}",

 retrofitMoshi: "com.squareup.retrofit2

 :converter-moshi:$

 {versions.retrofit}",

 moshi : "com.squareup.moshi:

 moshi:${versions.moshi}",

 moshiKotlin : "com.squareup.moshi:

Building and using remote data sources 203

 moshi-kotlin:${versions.moshi}"

]

 …

 }

4.	 In the build.gradle file of the data-remote module, make sure that the
following plugins are present:

plugins {

 id 'com.android.library'

 id 'kotlin-android'

 id 'kotlin-kapt'

 id 'dagger.hilt.android.plugin'

}

5.	 In the same file, change the configurations to the ones defined in the top-level
build.gradle file:

android {

 compileSdk defaultCompileSdkVersion

 defaultConfig {

 minSdk defaultMinSdkVersion

 targetSdk defaultTargetSdkVersion

 …

 }

 compileOptions {

 sourceCompatibility javaCompileVersion

 targetCompatibility javaCompileVersion

 }

 kotlinOptions {

 jvmTarget = jvmTarget

 }

}

Here, we are making sure that the new module will use the same configurations
with regards to compilation and the minimum and maximum Android version
as the rest of the project, making it easier to change the configuration across all
the modules.

204 Building Data Sources

6.	 In the same file, add the dependencies to the networking libraries and the data-
repository and domain modules:

dependencies {

 implementation(project(path: ":domain"))

 implementation(project(path: ":data-repository"))

 implementation coroutines.coroutinesAndroid

 implementation network.okHttp

 implementation network.retrofit

 implementation network.retrofitMoshi

 implementation network.moshi

 implementation network.moshiKotlin

 implementation di.hiltAndroid

 kapt di.hiltCompiler

 testImplementation test.junit

 testImplementation test.coroutines

 testImplementation test.mockito

}

7.	 In the top-level gradle.properties, add the following configuration for moshi:

android.jetifier.ignorelist=moshi-1.13.0

8.	 In the AndroidManifest.xml file in the data-remote module, add the
internet permission:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/
res/android"

 package="com.clean.data_remote">

 <uses-permission android:name="android.permission.
INTERNET" />

</manifest>

9.	 In the data-remote module, create a new package called networking.
10.	 In the networking package, create a new package called user.
11.	 In the user package, create a new class called UserApiModel:

data class UserApiModel(

 @Json(name = "id") val id: Long,

Building and using remote data sources 205

 @Json(name = "name") val name: String,

 @Json(name = "username") val username: String,

 @Json(name = "email") val email: String

)

12.	 In the same package, create a new interface called UserService:

interface UserService {

 @GET("/users")

 suspend fun getUsers(): List<UserApiModel>

 @GET("/users/{userId}")

 suspend fun getUser(@Path("userId") userId: Long):

 UserApiModel

}

13.	 In the networking package, create a new package called post.
14.	 In the post package, create a new class called PostApiModel:

data class PostApiModel(

 @Json(name = "id") val id: Long,

 @Json(name = "userId") val userId: Long,

 @Json(name = "title") val title: String,

 @Json(name = "body") val body: String

)

15.	 In the same package, create a new interface called PostService:

interface PostService {

 @GET("/posts")

 suspend fun getPosts(): List<PostApiModel>

 @GET("/posts/{postId}")

 suspend fun getPost(@Path("postId") id: Long):

 PostApiModel

}

206 Building Data Sources

16.	 In the data-remote module, create a new package called source.
17.	 In the source package, create a new class called RemoteUserDataSourceImpl:

class RemoteUserDataSourceImpl @Inject
constructor(private val userService: UserService) :

 RemoteUserDataSource {

 override fun getUsers(): Flow<List<User>> = flow {

 emit(userService.getUsers())

 }.map { users ->

 users.map { userApiModel ->

 convert(userApiModel)

 }

 }.catch {

 throw UseCaseException.UserException(it)

 }

 override fun getUser(id: Long): Flow<User> = flow {

 emit(userService.getUser(id))

 }.map {

 convert(it)

 }.catch {

 throw UseCaseException.UserException(it)

 }

 private fun convert(userApiModel: UserApiModel) =

 User(userApiModel.id, userApiModel.name,

 userApiModel.username, userApiModel.email)

}

Here, we invoke the getUsers and getUser methods from UserService and
then convert the UserApiModel objects to User objects to avoid the other layers
depending on the networking-related data. The same principle applies to error
handling. If there is a network error, such as an HTTP 404 code, the exception will
be HttpException, which is part of the Retrofit library.

18.	 In the source package, create a new class called RemotePostDataSourceImpl:

class RemotePostDataSourceImpl @Inject

Building and using remote data sources 207

constructor(private val postService: PostService) :

 RemotePostDataSource {

 override fun getPosts(): Flow<List<Post>> = flow {

 emit(postService.getPosts())

 }.map { posts ->

 posts.map { postApiModel ->

 convert(postApiModel)

 }

 }.catch {

 throw UseCaseException.PostException(it)

 }

 override fun getPost(id: Long): Flow<Post> = flow {

 emit(postService.getPost(id))

 }.map {

 convert(it)

 }.catch {

 throw UseCaseException.PostException(it)

 }

 private fun convert(postApiModel: PostApiModel) =

 Post(postApiModel.id, postApiModel.userId,

 postApiModel.title, postApiModel.body)

}

Here, we follow the same principle as with the RemoteUserDataSourceImpl
class.

19.	 In the data-remote module, create a new package called injection:
20.	 In the injection package, create a new class called NetworkModule:

@Module

@InstallIn(SingletonComponent::class)

class NetworkModule {

 @Provides

 fun provideOkHttpClient(): OkHttpClient =

208 Building Data Sources

 OkHttpClient

 .Builder()

 .readTimeout(15, TimeUnit.SECONDS)

 .connectTimeout(15, TimeUnit.SECONDS)

 .build()

 @Provides

 fun provideMoshi(): Moshi = Moshi.Builder().add

 (KotlinJsonAdapterFactory()).build()

 @Provides

 fun provideRetrofit(okHttpClient: OkHttpClient,

 moshi: Moshi): Retrofit = Retrofit.Builder()

 .baseUrl

 ("https://jsonplaceholder.typicode.com/")

 .client(okHttpClient)

 .addConverterFactory

 (MoshiConverterFactory.create(moshi))

 .build()

 @Provides

 fun provideUserService(retrofit: Retrofit):

 UserService =

 retrofit.create(UserService::class.java)

 @Provides

 fun providePostService(retrofit: Retrofit):

 PostService =

 retrofit.create(PostService::class.java)

}

Here, we provide the Retrofit and OkHttp dependencies required for networking.
21.	 In the injection package, create a class named RemoteDataSourceModule:

@Module

@InstallIn(SingletonComponent::class)

abstract class RemoteDataSourceModule {

Building and using remote data sources 209

 @Binds

 abstract fun bindPostDataSource(postDataSourceImpl:
RemotePostDataSourceImpl): RemotePostDataSource

 @Binds

 abstract fun bindUserDataSource

 (userDataSourceImpl:

 RemoteUserDataSourceImpl):

 RemoteUserDataSource

}

Here, we use Hilt to bind the implementations from this module with the
abstractions defined in the data-repository module.

22.	 To unit-test the code, we now need to create a new folder called resources in the
test folder of the data-remote module.

23.	 Inside the resources folder, create a folder called mockito-extensions;
inside this folder, create a file named org.mockito.plugins.MockMaker; and
inside this file, add the following text – mock-maker-inline.

24.	 Create a test class named RemoteUserDataSourceImplTest, which will test
the success scenarios for the methods inside RemoteUserDataSourceImpl:

class RemoteUserDataSourceImplTest {

 private val userService = mock<UserService>()

 private val userDataSource =

 RemoteUserDataSourceImpl(userService)

 @ExperimentalCoroutinesApi

 @Test

 fun testGetUsers() = runBlockingTest {

 val remoteUsers = listOf(UserApiModel(1,

 "name", "username", "email"))

 val expectedUsers = listOf(User(1, "name",

 "username", "email"))

 whenever(userService.getUsers()).

 thenReturn(remoteUsers)

210 Building Data Sources

 val result = userDataSource.getUsers().first()

 Assert.assertEquals(expectedUsers, result)

 }

 @ExperimentalCoroutinesApi

 @Test

 fun testGetUser() = runBlockingTest {

 val id = 1L

 val remoteUser = UserApiModel(id, "name",

 "username", "email")

 val user = User(id, "name", "username",

 "email")

 whenever(userService.getUser(id))

 .thenReturn(remoteUser)

 val result = userDataSource.getUser(id).

 first()

 Assert.assertEquals(user, result)

 }

}

Here, we are mocking the UserService interface and providing mock user data,
which will then be obtained and converted by RemoteDataSourceImpl.

25.	 In the same test class, add the error scenarios:

class RemoteUserDataSourceImplTest {

 …

 @ExperimentalCoroutinesApi

 @Test

 fun testGetUsersThrowsError() = runBlockingTest {

 whenever(userService.getUsers()).thenThrow

 (RuntimeException())

 userDataSource.getUsers().catch {

 Assert.assertTrue(it is UseCaseException.

 UserException)

 }.collect()

 }

Building and using remote data sources 211

 @ExperimentalCoroutinesApi

 @Test

 fun testGetUserThrowsError() = runBlockingTest {

 val id = 1L

 whenever(userService.getUser(id)).thenThrow

 (RuntimeException())

 userDataSource.getUser(id).catch {

 Assert.assertTrue(it is UseCaseException.

 UserException)

 }.collect()

 }

}

Here, we are mocking an error that is thrown by UserService, which will then
be converted by RemoteUserDataSourceImpl into UseCaseException.
UserException.

26.	 Create a test class named RemotePostDataSourceImplTest, which will have
similar test methods as RemoteUserDataSourceImplTest for posts:

class RemotePostDataSourceImplTest {

 private val postService = mock<PostService>()

 private val postDataSource =

 RemotePostDataSourceImpl(postService)

 @ExperimentalCoroutinesApi

 @Test

 fun testGetPosts() = runBlockingTest {

 val remotePosts = listOf(PostApiModel(1, 1,

 "title", "body"))

 val expectedPosts = listOf(Post(1, 1, "title",

 "body"))

 whenever(postService.getPosts()).thenReturn

 (remotePosts)

 val result = postDataSource.getPosts().first()

 Assert.assertEquals(expectedPosts, result)

 }

212 Building Data Sources

 @ExperimentalCoroutinesApi

 @Test

 fun testGetPost() = runBlockingTest {

 val id = 1L

 val remotePost = PostApiModel(id, 1, "title",

 "body")

 val expectedPost = Post(id, 1, "title",

 "body")

 whenever(postService.getPost(id)).thenReturn

 (remotePost)

 val result = postDataSource.getPost(id).

 first()

 Assert.assertEquals(expectedPost, result)

 }

}

Here, we are doing for posts what we did for users in
RemoteUserDataSourceImplTest.

27.	 Add the error scenarios in RemotePostDataSourceImplTest:

class RemotePostDataSourceImplTest {

 …

 @ExperimentalCoroutinesApi

 @Test

 fun testGetPostsThrowsError() = runBlockingTest {

 whenever(postService.getPosts()).thenThrow

 (RuntimeException())

 postDataSource.getPosts().catch {

 Assert.assertTrue(it is UseCaseException.

 PostException)

 }.collect()

 }

 @ExperimentalCoroutinesApi

 @Test

 fun testGetPostThrowsError() = runBlockingTest {

Building and using remote data sources 213

 val id = 1L

 whenever(postService.getPost(id)).thenThrow

 (RuntimeException())

 postDataSource.getPost(id).catch {

 Assert.assertTrue(it is UseCaseException.

 PostException)

 }.collect()

 }

}

If we run the tests, we should see something like the following figure:

Figure 7.2 – Output of the remote data source unit tests

In this exercise, we have added a new module to the application, in which we can
see how we can add a remote data source to the application. To fetch the data, we are
using libraries such as OkHttp and Retrofit and combining them with the data source
implementation for fetch users and posts. In the following section, we will expand the
application to introduce local data sources, in which we will persist the data we are
fetching here.

214 Building Data Sources

Building and integrating local data sources
In this section, we will analyze how we can build local data sources and integrate them
with libraries such as Room and Data Store.

Local data sources have a similar structure to remote data sources. The abstractions
are provided by the layers sitting above, and the implementations are responsible for
invoking methods from persistence frameworks and converting data into entities, like the
following figure:

Figure 7.3 – A local data source diagram

Building and integrating local data sources 215

Let's assume we have the same UserEntity defined in the previous chapters:

data class User(

 val id: String,

 val firstName: String,

 val lastName: String,

 val email: String

) {

 fun getFullName() = "$firstName $lastName"

}

Let's make the same assumption about UserLocalDataSource:

interface UserLocalDataSource {

 suspend fun insertUser(user: User)

 fun getUser(id: String): Flow<User>

}

We now need to provide an implementation for this data source that will manipulate the
data from Room. First, we need to define a user entity for Room:

@Entity(tableName = "user")

data class UserEntity(

 @PrimaryKey @ColumnInfo(name = "id") val id: String,

 @ColumnInfo(name = "first_name") val firstName: String,

 @ColumnInfo(name = "last_name") val lastName: String,

 @ColumnInfo(name = "email") val email: String

)

Now, we can define UserDao, which queries a user by an ID and inserts a user:

@Dao

interface UserDao {

 @Query("SELECT * FROM user where id = :id")

 fun getUser(id: String): Flow<UserEntity>

216 Building Data Sources

 @Insert(onConflict = OnConflictStrategy.REPLACE)

 fun insertUser(users: UserEntity)

}

Finally, the implementation of the data source looks like this:

class UserLocalDataSourceImpl(private val userDao: UserDao) :
UserLocalDataSource {

 override suspend fun insertUser(user: User) {

 userDao.insertUser(UserEntity(user.id,

 user.firstName, user.lastName, user.email))

 }

 override fun getUser(id: String): Flow<User> {

 return userDao.getUser(id).map {

 User(it.id, it.firstName, it.lastName,

 it.email)

 }

 }

}

Here, the local data source invokes UserDao to insert and retrieve a user and converts
the domain entity into a Room entity.

If we want to use Data Store instead of Room with a local data store implementation, we
can have something like the following example:

private val KEY_ID = stringPreferencesKey("key_id")

private val KEY_FIRST_NAME =

 stringPreferencesKey("key_first_name")

private val KEY_LAST_NAME =

 stringPreferencesKey("key_last_name")

private val KEY_EMAIL = stringPreferencesKey("key_email")

class UserLocalDataSourceImpl(private val dataStore:

 DataStore<Preferences>) : UserLocalDataSource {

 override suspend fun insertUser(user: User) {

 dataStore.edit {

 it[KEY_ID] = user.id

Building and integrating local data sources 217

 it[KEY_FIRST_NAME] = user.firstName

 it[KEY_LAST_NAME] = user.lastName

 it[KEY_EMAIL] = user.email

 }

 }

 override fun getUser(id: String): Flow<User> {

 return dataStore.data.map {

 User(

 it[KEY_ID].orEmpty(),

 it[KEY_FIRST_NAME].orEmpty(),

 it[KEY_LAST_NAME].orEmpty(),

 it[KEY_EMAIL].orEmpty()

)

 }

 }

}

Here, we use a key for each of the fields of the User object to store the data. The
getUser method doesn't use the ID to search for a user, which shows that for this
particular use case, Room is the more appropriate method.

In this section, we looked at how we can build a local data source with the help of the
Room and Data Store libraries to be able to query and persist data locally on a device.
Next, we will look at an exercise to show how we can implement a local data store.

Exercise 07.02 – Building a local data source
Modify Exercise 07.01 – Building a remote data source so that a new Android library
module named data-local is created. This module will depend on domain and
data-repository.

The module will implement the following:

•	 UserEntity and PostEntity, which will hold data to be persisted from User
and Post using Room

•	 UserDao and PostDao, which will be responsible for persisting and fetching a list
of UserEntity and PostEntity

218 Building Data Sources

•	 LocalUserDataSourceImpl and LocalPostDataSourceImpl, which will
be responsible for invoking the UserDao and PostDao objects to persist data and
for converting data to User and Post objects

•	 LocalInteractionDataSourceImpl, which will be responsible for persisting
the Interaction object

To complete this exercise, you will need to do the following:

1.	 Create the data-local module.
2.	 Create the UserEntity and PostEntity classes.
3.	 Create the DAOs for users and posts.
4.	 Create the data source implementations.

Follow these steps to complete the exercise:

1.	 Create a new module named data-local, which will be an Android library
module.

2.	 Make sure that in the top-level build.gradle file, the following dependencies are
set:

buildscript {

 …

 dependencies {

 classpath gradlePlugins.android

 classpath gradlePlugins.kotlin

 classpath gradlePlugins.hilt

 }

}

3.	 In the same file, add the persistence libraries to the library mappings:

 ext {

 …

 versions = [

 …

 room : "2.4.0",

 datastore : "1.0.0",

 …

]

Building and integrating local data sources 219

 …

 persistence = [

 roomRuntime : "androidx.room:room-

 runtime:${versions.room}",

 roomKtx : "androidx.room:room-

 ktx:${versions.room}",

 roomCompiler: "androidx.room:room-

 compiler:${versions.room}",

 datastore : "androidx.datastore:

 datastore-preferences:$

 {versions.datastore}"

]

 …

 }

4.	 In the build.gradle file of the data-local module, make sure that the
following plugins are present:

plugins {

 id 'com.android.library'

 id 'kotlin-android'

 id 'kotlin-kapt'

 id 'dagger.hilt.android.plugin'

}

5.	 In the same file, change the configurations to the ones defined in the top-level
build.gradle file:

android {

 compileSdk defaultCompileSdkVersion

 defaultConfig {

 minSdk defaultMinSdkVersion

 targetSdk defaultTargetSdkVersion

 …

 }

 compileOptions {

 sourceCompatibility javaCompileVersion

220 Building Data Sources

 targetCompatibility javaCompileVersion

 }

 kotlinOptions {

 jvmTarget = jvmTarget

 }

}

6.	 In the same file, add the dependencies to the networking libraries and the data-
repository and domain modules:

dependencies {

 implementation(project(path: ":domain"))

 implementation(project(path: ":data-repository"))

 implementation coroutines.coroutinesAndroid

 implementation persistence.roomRuntime

 implementation persistence.roomKtx

 kapt persistence.roomCompiler

 implementation persistence.datastore

 implementation di.hiltAndroid

 kapt di.hiltCompiler

 testImplementation test.junit

 testImplementation test.coroutines

 testImplementation test.mockito

}

7.	 In the data-local module, create a new package called db.
8.	 In the db package, create a new package called user.
9.	 In the user package, create the UserEntity class:

@Entity(tableName = "user")

data class UserEntity(

 @PrimaryKey @ColumnInfo(name = "id") val id: Long,

 @ColumnInfo(name = "name") val name: String,

 @ColumnInfo(name = "username") val username:

 String,

 @ColumnInfo(name = "email") val email: String

)

Building and integrating local data sources 221

10.	 In the same package, create the UserDao interface:

@Dao

interface UserDao {

 @Query("SELECT * FROM user")

 fun getUsers(): Flow<List<UserEntity>>

 @Insert(onConflict = OnConflictStrategy.REPLACE)

 fun insertUsers(users: List<UserEntity>)

}

11.	 In the db package, create a new package called post.
12.	 In the post package, create a new class called PostEntity:

@Entity(tableName = "post")

data class PostEntity(

 @PrimaryKey @ColumnInfo(name = "id") val id: Long,

 @ColumnInfo(name = "userId") val userId: Long,

 @ColumnInfo(name = "title") val title: String,

 @ColumnInfo(name = "body") val body: String

)

13.	 In the same package, create a new interface called PostDao:

@Dao

interface PostDao {

 @Query("SELECT * FROM post")

 fun getPosts(): Flow<List<PostEntity>>

 @Insert(onConflict = OnConflictStrategy.REPLACE)

 fun insertPosts(users: List<PostEntity>)

}

14.	 In the db package, create the AppDatabase class:

@Database(entities = [UserEntity::class,
PostEntity::class], version = 1)

abstract class AppDatabase : RoomDatabase() {

222 Building Data Sources

 abstract fun userDao(): UserDao

 abstract fun postDao(): PostDao

}

15.	 In the data-local module, create a new package called source.
16.	 In the source package, create a new class called LocalUserDataSourceImpl:

class LocalUserDataSourceImpl @Inject constructor(private
val userDao: UserDao) :

 LocalUserDataSource {

 override fun getUsers(): Flow<List<User>> =

 userDao.getUsers().map { users ->

 users.map {

 User(it.id, it.name, it.username,

 it.email)

 }

 }

 override suspend fun addUsers(users: List<User>) =

 userDao.insertUsers(users.map {

 UserEntity(it.id, it.name, it.username,

 it.email)

 })

}

Here, in the getUsers method, we retrieve a list of UserEntity objects from
UserDao and convert them into User objects. In the addUsers method, we do
the opposite, by taking a list of User objects to be inserted and converting them
into UserEntity objects.

17.	 In the same package, create the LocalPostDataSourceImpl class:

class LocalPostDataSourceImpl @Inject constructor(private
val postDao: PostDao) :

 LocalPostDataSource {

 override fun getPosts(): Flow<List<Post>> =

 postDao.getPosts().map { posts ->

Building and integrating local data sources 223

 posts.map {

 Post(it.id, it.userId, it.title, it.body)

 }

 }

 override suspend fun addPosts(posts: List<Post>) =

 postDao.insertPosts(posts.map {

 PostEntity(it.id, it.userId, it.title,

 it.body)

 })

}

Here, we follow the same approach we used for LocalUserDataSourceImpl.
18.	 In the same package, create the LocalInteractionDataSourceImpl class:

internal val KEY_TOTAL_TAPS = intPreferencesKey("key_
total_taps")

class LocalInteractionDataSourceImpl @
Inject constructor(private val dataStore:
DataStore<Preferences>) :

 LocalInteractionDataSource {

 override fun getInteraction(): Flow<Interaction> {

 return dataStore.data.map {

 Interaction(it[KEY_TOTAL_TAPS] ?: 0)

 }

 }

 override suspend fun saveInteraction(interaction:

 Interaction) {

 dataStore.edit {

 it[KEY_TOTAL_TAPS] =

 interaction.totalClicks

 }

 }

}

224 Building Data Sources

Here, we use the Preference Data Store library to persist the Interaction object, by
holding different keys for each field in the Interaction class, and in this case, it
will be just one key for the total clicks.

19.	 In the data-local module, create a new package named injection.
20.	 In the injection package, create a new class named PersistenceModule:

val Context.dataStore: DataStore<Preferences> by
preferencesDataStore(name = "my_preferences")

@Module

@InstallIn(SingletonComponent::class)

class PersistenceModule {

 @Provides

 fun provideAppDatabase(@ApplicationContext

 context: Context): AppDatabase =

 Room.databaseBuilder(

 context,

 AppDatabase::class.java, "my-database"

).build()

 @Provides

 fun provideUserDao(appDatabase: AppDatabase):

 UserDao = appDatabase.userDao()

 @Provides

 fun providePostDao(appDatabase: AppDatabase):

 PostDao = appDatabase.postDao()

 @Provides

 fun provideLocalInteractionDataSourceImpl

 (@ApplicationContext context: Context) =

 LocalInteractionDataSourceImpl(context.dataStore)

}

Here, we provide all the Data Store and Room dependencies.

Building and integrating local data sources 225

21.	 In the same package, create a new class called LocalDataSourceModule, in
which we connect the abstractions to the bindings:

@Module

@InstallIn(SingletonComponent::class)

abstract class LocalDataSourceModule {

 @Binds

 abstract fun bindPostDataSource

 (lostDataSourceImpl: LocalPostDataSourceImpl):

 LocalPostDataSource

 @Binds

 abstract fun bindUserDataSource

 (userDataSourceImpl: LocalUserDataSourceImpl):

 LocalUserDataSource

 @Binds

 abstract fun bindInteractionDataStore

 (interactionDataStore:LocalInteractionData

 SourceImpl): LocalInteractionDataSource

}

22.	 To unit-test the code, we will now need to create a new folder called resources in
the test folder of the data-local module.

23.	 Inside the resources folder, create a folder called mockito-extensions;
inside this folder, create a file named org.mockito.plugins.MockMaker; and
inside this file, add the following text – mock-maker-inline.

24.	 Create the LocalUserDataSourceImplTest test class:

class LocalUserDataSourceImplTest {

 private val userDao = mock<UserDao>()

 private val userDataSource =

 LocalUserDataSourceImpl(userDao)

 @ExperimentalCoroutinesApi

 @Test

226 Building Data Sources

 fun testGetUsers() = runBlockingTest {

 val localUsers = listOf(UserEntity(1, "name",

 "username", "email"))

 val expectedUsers = listOf(User(1, "name",

 "username", "email"))

 whenever(userDao.getUsers()).thenReturn

 (flowOf(localUsers))

 val result = userDataSource.getUsers().first()

 Assert.assertEquals(expectedUsers, result)

 }

 @ExperimentalCoroutinesApi

 @Test

 fun testAddUsers() = runBlockingTest {

 val localUsers = listOf(UserEntity(1, "name",

 "username", "email"))

 val users = listOf(User(1, "name", "username",

 "email"))

 userDataSource.addUsers(users)

 verify(userDao).insertUsers(localUsers)

 }

}

Here, we are mocking the UserDao class and using it to provide mock data to
LocalUserDataSourceImpl, which will then convert the data to and from the
User objects.

25.	 Create the LocalPostDataSourceImplTest test class:

class LocalPostDataSourceImplTest {

 private val postDao = mock<PostDao>()

 private val postDataSource =

 LocalPostDataSourceImpl(postDao)

 @ExperimentalCoroutinesApi

 @Test

 fun testGetPosts() = runBlockingTest {

Building and integrating local data sources 227

 val localPosts = listOf(PostEntity(1, 1,

 "title", "body"))

 val expectedPosts = listOf(Post(1, 1, "title",

 "body"))

 whenever(postDao.getPosts()).thenReturn

 (flowOf(localPosts))

 val result = postDataSource.getPosts().first()

 Assert.assertEquals(expectedPosts, result)

 }

 @ExperimentalCoroutinesApi

 @Test

 fun testAddUsers() = runBlockingTest {

 val localPosts = listOf(PostEntity(1, 1,

 "title", "body"))

 val posts = listOf(Post(1, 1, "title",

 "body"))

 postDataSource.addPosts(posts)

 verify(postDao).insertPosts(localPosts)

 }

}

Here, we perform the same type of tests for posts as we did in
LocalUserDataSourceImplTest for users.

26.	 Create the LocalInteractionDataSourceImplTest test class:

class LocalInteractionDataSourceImplTest {

 private val dataStore = mock<DataStore

 <Preferences>>()

 private val interactionDataSource =

 LocalInteractionDataSourceImpl(dataStore)

 @ExperimentalCoroutinesApi

 @Test

 fun testGetInteraction() = runBlockingTest {

 val clicks = 10

228 Building Data Sources

 val interaction = Interaction(clicks)

 val preferences = mock<Preferences>()

 whenever(preferences[KEY_TOTAL_TAPS]).

 thenReturn(clicks)

 whenever(dataStore.data).thenReturn

 (flowOf(preferences))

 val result = interactionDataSource.

 getInteraction().first()

 assertEquals(interaction, result)

 }

 @ExperimentalCoroutinesApi

 @Test

 fun testSaveInteraction() = runBlockingTest {

 val clicks = 10

 val interaction = Interaction(clicks)

 val preferences = mock<MutablePreferences>()

 whenever(preferences.toMutablePreferences())

 .thenReturn(preferences)

 whenever(dataStore.updateData(any())).

 thenAnswer {

 runBlocking {

 it.getArgument<suspend (Preferences) -

 > Preferences>(0).invoke(preferences)

 }

 preferences

 }

 interactionDataSource.saveInteraction(interaction)

 verify(preferences)[KEY_TOTAL_TAPS] = clicks

 }

}

Here, in the testSaveInteraction method, we need to mock the
updateData method instead of the edit method from the DataStore class.
This is because the edit method is an extension function that can't be mocked
with the current libraries we have and instead must rely on the method it invokes,
which is updateData.

Building and integrating local data sources 229

If we run the tests, we should see something like the following figure:

Figure 7.4 – Output of the local data source unit tests

If we draw a diagram of the modules in the exercise, we will see something like the
following figure:

Figure 7.5 – The exercise 07.02 module diagram

230 Building Data Sources

We can see that the :data-remote and :data-local modules are isolated from
each other. The two modules have different responsibilities and deal with different
dependencies. :data-remote deals with fetching data from the internet, while :data-
local deals with persisting data locally into SQLite using Room and files using Data
Store. This gives our code more flexibility because we are able to change how we fetch data
– for example, without impacting how we persist the data.

In this exercise, we have created a new module in the application in which we deal with
local data sources. To persist data, we have used libraries such as Room and Data Store,
and we have integrated them with the local data store.

Summary
In this chapter, we looked at the concept of data sources and the different types of
data sources we have available in an Android application. We started with remote data
sources and saw some examples of how we can build a data source and combine it with
libraries such as Retrofit and OkHttp. The local data source followed similar principles
as the remote one, and here, we have used libraries such as Room and Data Store to
implement this.

In the exercises, we implemented the data sources as part of different modules. This was to
avoid creating any unnecessary dependencies between the other layers of the application
and the specific frameworks we have used for the data sources. In the next chapter, we will
look at how we can build the presentation layer and show data to the user. We will also
explore how we can split the presentation layer into separate modules and navigate from
a screen in one module to a screen in another module, through the introduction of
modules that can be shared by other presentation modules.

Part 3 –
Presentation Layer

This part will go over the presentation layer and the patterns that can be applied to have a
decoupled and testable code base.

This part includes the following chapters:

•	 Chapter 8, Implementing an MVVM Architecture

•	 Chapter 9, Implementing an MVI Architecture

•	 Chapter 10, Putting It All Together

8
Implementing an

MVVM Architecture
In this chapter, we will look at how data can be presented by Android applications to
end users. We will look over the available architecture patterns for data presentation and
analyze the differences between them. Later, we will look at the Model-View-ViewModel
(MVVM) pattern, the role it plays in separating business logic and user interface updates,
and how we can implement it using Android Architecture Components. Finally, we will
look at how we can split the presentation layer across multiple library modules. In the
exercises of this chapter, we will integrate the layers built in the previous chapters with
a presentation layer built using MVVM, we will create a presentation layer that will plug
into the domain layer to fetch and update the data, and we will also look at how we handle
common logic between different modules in the presentation layer.

In this chapter, we will cover the following topics:

•	 Presenting data in Android applications

•	 Presenting data with MVVM

•	 Presenting data in multiple modules

234 Implementing an MVVM Architecture

By the end of the chapter, you will be able to implement the MVVM architecture pattern
in an Android application using the ViewModel architecture component and be able to
split the presentation layer into separate library modules.

Technical requirements
This chapter has the following hardware and software requirements:

•	 Android Studio Arctic Fox 2020.3.1 Patch 3

The code files for this chapter can be found here: https://github.com/
PacktPublishing/Clean-Android-Architecture/tree/main/Chapter8.

Check out the following video to see the Code in Action: https://bit.ly/3FZJWIl

Presenting data in Android applications
In this section, we will look at various architecture patterns suitable for presenting data in
an Android application and analyze their benefits and drawbacks.

Early Android applications relied on a pattern similar to the Model-View-Controller
(MVC) architecture pattern, where an activity is the Controller, the View is represented by
the android.widget.View hierarchy, and the Model is responsible for managing the
application's data. The relationship between the components would look something like
the following:

Figure 8.1 – Android MVC relationship

From Figure 8.1, we can see that the Controller represented by the activity would interact
with the Model to fetch and manipulate the data, and then it would update the View with
the relevant information.

Presenting data in Android applications 235

The idea is to have each Activity sandboxed as much as possible so that they can be
offered and shared between multiple applications (like how the Camera application is
opened by other applications to take photos and offer those photos to those applications).
Because of this, activities need to be started using intents and not by instantiating
them. By removing the ability to instantiate an Activity directly, we lose the ability
to inject dependencies through the constructor. Another factor we need to consider is
that activities have life cycle states, and we inherit these states in each Activity in
our application. All these factors combined make an Activity very hard or next to
impossible to unit test unless we use a library such as Robolectric or rely on instrumented
tests on an Android device or emulator. Both options are slow and, in the case of
instrumented tests, can be expensive when we need to run the tests in testing clouds such
as Firebase Test Lab.

To solve the problem of unit testing logic that was present in activities and later fragments,
various adaptations of the Humble Object pattern emerged. More information about the
pattern can be found here: http://xunitpatterns.com/Humble%20Object.
html. The idea was to separate as much as possible the logic present in activities into
separate objects and unit test those objects. One of the most popular solutions was the
Model-View-Presenter (MVP) architecture pattern. In this pattern, the Activity
along with the android.widget.View hierarchy becomes the View, the Presenter
is responsible for fetching the data from the model and performing the logic required,
updating the View, and the Model has the same responsibility as in MVC to handle the
application's data. The relationship between these components looks like the following
figure:

Figure 8.2 – MVP relationship

The interesting aspect of the relationship between the components is the relationship
between the Presenter and the View, which goes both ways. The Presenter will update the
View with the relevant data, but the View will also invoke the Presenter, if necessary for
user interactions. Because of the relationship between the two components, the definition
of a contract is required, which looks like the following:

interface Presenter {

236 Implementing an MVVM Architecture

 fun loadUsers()

 fun validateInput(text: String)

}

interface View {

 fun showUsers(users: List<User>)

 fun showInputError(error: String)

}

Here, we have a View interface and a Presenter interface. The implementation of the
Presenter might look something like this:

class PresenterImpl(

 private val view: View,

 private val getUsersUseCase: GetUsersUseCase

) : Presenter {

 private val scope = CoroutineScope(Dispatchers.Main)

 override fun loadUsers() {

 scope.launch {

 getUsersUseCase.execute()

 .collect { users ->

 view.showUsers(users)

 }

 }

 }

 override fun validateInput(text: String) {

 if (text.isEmpty()) {

 view.showInputError("Invalid input")

 }

 }

}

Presenting data in Android applications 237

Here, the PresenterImpl class has a dependency on the View and on a
GetUsersUseCase object, which will return a Flow object containing a list of users.
When the Presenter receives the list of users, it will call the showUsers method from
the View. When the validateInput method is called, the Presenter will check
whether the text is empty and invoke the showInputError method from the View
with an error message. The implementation of the View might look like the following:

class MainActivity : ComponentActivity(), View {

 @Inject

 private lateinit var presenter: Presenter

 private lateinit var usersAdapter: UsersAdapter

 private lateinit var editText: EditText

 private lateinit var errorView: TextView

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 …

 editText.addTextChangedListener(object :

 TextWatcher {

 …

 override fun afterTextChanged(s: Editable?) {

 presenter.validateInput(s?.toString().
orEmpty())

 }

 })

 presenter.loadUsers()

 }

 override fun showUsers(users: List<User>) {

 usersAdapter.add(users)

 }

 override fun showInputError(error: String) {

 errorView.text = error

 }

}

238 Implementing an MVVM Architecture

Here, we implement the View interface in MainActivity; in the implementation of the
methods, we call the appropriate View- related classes to show the relevant data, such as
showing the error message for an invalid input in a TextView object and setting the data
in a RecyclerView.Adapter object. For validating the input, when the text changes
in an EditText object, it will invoke the Presenter to validate the new text. The
Presenter dependency will be injected using some form of dependency injection.

Because presenters will end up performing background operations, we run the risk of
causing Context leaks. This means that we need to factor the life cycle of the Activity
into the MVP contract. To achieve this, we will need to define a close method in the
Presenter:

interface Presenter {

 …

 fun close()

}

In the preceding snippet, we added the close method, which will be called in the
onDestroy method of the Activity as follows:

override fun onDestroy() {

 presenter.close()

 super.onDestroy()

}

The implementation of the close method will have to clean up all the resources that
might cause any leaks:

class PresenterImpl(

 private val view: View,

 private val getUsersUseCase: GetUsersUseCase

) : Presenter {

 private val scope = CoroutineScope(Dispatchers.Main)

 …

 override fun close() {

 scope.cancel()

 }

}

Presenting data with MVVM 239

Here, we are canceling the subscription to the Flow object so that we will not receive any
updates after the Activity is destroyed.

In this section, we have looked at previous architecture patterns used in Android
applications, from the MVC-like approach that was used in early Android applications to
MVP, which aimed to solve some of the problems of the initial approach. Although MVP
was popular in the past and is still present in some Android applications, it has slowly
been phased out, mainly because of the release of Android Architecture Components,
which rely on the MVVM pattern, and additionally, Jetpack Compose, which works better
with data flows, which are more suited to MVVM. In the section that follows, we will look
at the MVVM architecture pattern and how it is different from MVP as a concept.

Presenting data with MVVM
In this section, we will analyze the Model-View-ViewModel architecture pattern and how
it is implemented for Android applications.

MVVM represents a different approach to the Humble Object pattern, which attempts
to extract the logic out of activities and fragments. In MVVM, the View is represented
by activities and fragments as it was in MVP, the Model plays the same role, managing
the data, and the ViewModel sits between the two by requesting the data from the Model
when the View requires it. The relationship between the three is as follows:

Figure 8.3 – MVVM relationship

In Figure 8.3, we see a unidirectional relationship between the three components. The
View has a dependency on the ViewModel, and the ViewModel has a dependency on
the Model. This allows for more flexibility because multiple Views can use the same
ViewModel. For the data to be updated in the View, MVVM requires an implementation
of the Observer pattern. This means that the ViewModel uses an Observable, which the
View will subscribe to and react to changes in the data.

240 Implementing an MVVM Architecture

To develop Android applications, we have the possibility of using the Android
Architecture Components libraries, which provide a ViewModel class that solves the
issue of activity and fragment life cycles, combined with coroutine extensions useful for
subscribing to flows or coroutines to stop the emission of data when the activities and
fragments are in invalid states for data to be displayed and to avoid context leaks.

From the perspective of Clean Architecture, MVVM sits on the Interface Adapter layer.
It has the role of fetching the data from the Use Case layer and converting the entities
into objects that the Framework layer requires. It also handles changes to the data
triggered by the user and converts this data back into entities, passing it back to the Use
Case layer. In Chapter 3, Understanding Data Presentation on Android, we discussed the
Android Architecture Components libraries and saw how we can implement ViewModels
combined with LiveData (which acts as the observable that the View can subscribe to).
An example of a ViewModel class might look like the following:

class MyViewModel(

 private val getUsersUseCase: GetUsersUserUseCase

) : ViewModel() {

 private val _usersFlow =

 MutableStateFlow<List<UiUser>>(listOf<UiUser>())

 val usersFlow: StateFlow<List<UiUser>> = _usersFlow

 fun load() {

 viewModelScope.launch {

 getUsersUseCase.execute()

 .map {

 // Convert List<User> to List<UiUser>

 }

 .collect {

 _usersFlow.value = it

 }

 }

 }

}

Here, we load a list of User objects and then keep that list inside a StateFlow object.
This StateFlow object replaces LiveData and represents the observable that the View
will subscribe to. When the View requires the list of users, it will invoke the load method.

Presenting data with MVVM 241

In this section, we have analyzed the MVVM architecture pattern and the difference
between it and the MVP pattern. In the following section, we will look at how we can
present data using MVVM inside an Android application.

Exercise 08.01 – Implementing MVVM
Modify Exercise 07.02, Building a local data source, of Chapter 7, Building
Data Sources, so that a new module called presentation-posts
is created. The module will be responsible for displaying the data from
GetPostsWithUsersWithInteractionUseCase using MVVM. The data will be
displayed in the following format:

•	 A header with the following text: "Total click count: x" where x is the number of
clicks taken from the totalClicks field in the Interaction class

•	 A list of posts where each row contains the following: "Author: x" and "Title: y" where
x is the name field in the User class, and y is the title field in the Post class

•	 A loading view for when the data is being loaded

•	 A Snackbar view for when there is an error

To complete this exercise, you will need to do the following:

1.	 Create the presentation-post module.
2.	 Create a new sealed class called UiState, which will have as subclasses Loading,

Error (which will hold an error message), and Success (which will hold the
post data).

3.	 Create a new class called PostListItemModel, which will have id, author,
and name as fields.

4.	 Create a new class called PostListModel, which will have a headerText field
and a list of PostListItemModel objects.

5.	 Create a new class called PostListConverter, which will convert a Result.
Success object into a UiState.Success, which holds the PostListModel
object and will convert a Result.Error object into a UiState.Error object.

6.	 Create a new class called PostListViewModel, which will load the data from
GetPostsWithUsersWithInteractionUseCase, convert the data using
PostListConverter, and store UiState in StateFlow.

7.	 Create a new Kotlin file, which will contain @Composable methods responsible for
drawing the UI.

8.	 Modify MainActivity in the app module so that it will display the list of posts.

242 Implementing an MVVM Architecture

Follow these steps to complete the exercise:

1.	 Create a new module called presentation-post, which will be an Android
library module.

2.	 Make sure that in the top-level build.gradle file, the following dependencies
are set:

buildscript {

 …

 dependencies {

 classpath gradlePlugins.android

 classpath gradlePlugins.kotlin

 classpath gradlePlugins.hilt

 }

}

3.	 In the same file, add the persistence libraries to the library mappings:

buildscript {

 ext {

 …

 versions = [

 …

 viewModel : "2.4.0",

 navigationCompose : "2.4.0-rc01",

 hiltNavigationCompose: "1.0.0-rc01",

 …

]

 …

 androidx = [

 …

 viewModelKtx : "androidx.

 lifecycle:lifecycle-viewmodel-

 ktx:${versions.viewModel}",

 viewModelCompose : "androidx.

 lifecycle:lifecycle-viewmodel-

 compose:${versions.viewModel}",

 navigationCompose : "androidx.

Presenting data with MVVM 243

 navigation:navigation-compose:$

 {versions.navigationCompose}",

 hiltNavigationCompose : "androidx.

 hilt:hilt-navigation-compose:$

 {versions.hiltNavigationCompose}"

]

 …

 }

 …

}

Here, we have added dependencies for the ViewModel library as well as the
Navigation library (which will be used in later exercises).

4.	 In the build.gradle file of the presentation-post module, make sure that
the following plugins are present:

plugins {

 id 'com.android.library'

 id 'kotlin-android'

 id 'kotlin-kapt'

 id 'dagger.hilt.android.plugin'

}

5.	 In the same file, change the configurations to the ones defined in the top-level
build.gradle file:

android {

 compileSdk defaultCompileSdkVersion

 defaultConfig {

 minSdk defaultMinSdkVersion

 targetSdk defaultTargetSdkVersion

 …

 }

 …

 compileOptions {

 sourceCompatibility javaCompileVersion

244 Implementing an MVVM Architecture

 targetCompatibility javaCompileVersion

 }

 kotlinOptions {

 jvmTarget = jvmTarget

 useIR = true

 }

 buildFeatures {

 compose true

 }

 composeOptions {

 kotlinCompilerExtensionVersion versions.

 compose

 }

}

Here, we keep the same configuration consistent with the other modules in the
application, and we integrate the Jetpack Compose configuration.

6.	 In the same file, add the dependencies to the networking libraries and domain
modules:

dependencies {

 implementation(project(path: ":domain"))

 implementation coroutines.coroutinesAndroid

 implementation androidx.composeUi

 implementation androidx.composeMaterial

 implementation androidx.viewModelKtx

 implementation androidx.viewModelCompose

 implementation androidx.lifecycleRuntimeKtx

 implementation androidx.navigationCompose

 implementation di.hiltAndroid

 kapt di.hiltCompiler

 testImplementation test.junit

 testImplementation test.coroutines

 testImplementation test.mockito

}

7.	 In the presentation-post module, create a package called list.

Presenting data with MVVM 245

8.	 In the list package, create the UiState class:

sealed class UiState<T : Any> {

 object Loading : UiState<Nothing>()

 data class Error<T : Any>(val errorMessage:

 String) : UiState<T>()

 data class Success<T : Any>(val data: T) :

 UiState<T>()

}

9.	 In the same package, create a file called PostListModels.
10.	 In the PostListModels file, create the PostListItemModel class:

data class PostListItemModel(

 val id: Long,

 val userId: Long,

 val authorName: String,

 val title: String

)

11.	 In the same file, create the PostListModel class:

data class PostListModel(

 val headerText: String = "",

 val items: List<PostListItemModel> = listOf()

)

12.	 In the presentation-post module, in the src/main folder, create a folder
called res.

13.	 In the res folder, create a new folder called values.
14.	 In the values folder, create a file called strings.xml.
15.	 In the strings.xml file, add the following strings:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="total_click_count">Total click

 count: %d</string>

 <string name="author">Author: %s</string>

 <string name="title">Title: %s</string>

</resources>

246 Implementing an MVVM Architecture

16.	 In the list package, create the PostListConverter class:

class PostListConverter @Inject constructor(@
ApplicationContext private val context: Context) {

 fun convert(postListResult: Result

 <GetPostsWithUsersWithInteractionUseCase.

 Response>): UiState<PostListModel> {

 return when (postListResult) {

 is Result.Error -> {

 UiState.Error(postListResult.

 exception.localizedMessage.orEmpty())

 }

 is Result.Success -> {

 UiState.Success(PostListModel(

 headerText = context.getString(

 R.string.total_click_count,

 postListResult.data.

 interaction.totalClicks

),

 items = postListResult.data.

 posts.map {

 PostListItemModel(

 it.post.id,

 it.user.id,

 context.getString(R.string.
author, it.user.name),

 context.getString(R.string.
title, it.post.title)

)

 }

))

 }

 }

 }

}

Presenting data with MVVM 247

Here, we convert the Result.Success and Result.Error objects into
equivalent UiState objects, which will be used to display the information to the
user.

17.	 In the list package, create the PostListViewModel class:

@HiltViewModel

class PostListViewModel @Inject constructor(

 private val useCase:

 GetPostsWithUsersWithInteractionUseCase,

 private val converter: PostListConverter

) : ViewModel() {

 private val _postListFlow =

 MutableStateFlow<UiState

 <PostListModel>>(UiState.Loading)

 val postListFlow:

 StateFlow<UiState<PostListModel>> =

 _postListFlow

 fun loadPosts() {

 viewModelScope.launch {

 useCase.execute

 (GetPostsWithUsersWithInteractionUseCase

 .Request)

 .map {

 converter.convert(it)

 }

 .collect {

 _postListFlow.value = it

 }

 }

 }

}

Here, we get the list of posts and users from the
GetPostsWithUsersInteractionUseCase object, then we convert it to the
UiState object, and finally, we update StateFlow with the UiState object.

248 Implementing an MVVM Architecture

18.	 In the list package, create a file called PostListScreen.
19.	 In the PostListScreen file, add a method to display a loading widget and a

Snackbar method:

@Composable

fun Error(errorMessage: String) {

 Column(

 modifier = Modifier.fillMaxSize(),

 verticalArrangement = Arrangement.Bottom

) {

 Snackbar {

 Text(text = errorMessage)

 }

 }

}

@Composable

fun Loading() {

 Column(

 modifier = Modifier.fillMaxSize(),

 verticalArrangement = Arrangement.Center,

 horizontalAlignment =

 Alignment.CenterHorizontally,

) {

 CircularProgressIndicator()

 }

}

20.	 In the same file, add a method to display the list of posts and the header:

@Composable

fun PostList(

 postListModel: PostListModel

) {

 LazyColumn(modifier = Modifier.padding(16.dp)) {

 item(postListModel.headerText) {

 Column(modifier = Modifier.padding(16.dp)) {

 Text(text = postListModel.headerText)

Presenting data with MVVM 249

 }

 }

 items(postListModel.items) { item ->

 Column(

 modifier = Modifier

 .padding(16.dp)

) {

 Text(text = item.authorName)

 Text(text = item.title)

 }

 }

 }

}

21.	 In the same file, add a method that will monitor the value of postListFlow and
invoke one of the preceding three methods, depending on the value of the state:

@Composable

fun PostListScreen(

 viewModel: PostListViewModel

) {

 viewModel.loadPosts()

 viewModel.postListFlow.collectAsState().value.let {
state ->

 when (state) {

 is UiState.Loading -> {

 Loading()

 }

 is UiState.Error -> {

 Error(state.errorMessage)

 }

 is UiState.Success -> {

 PostList(state.data)

 }

 }

 }

}

250 Implementing an MVVM Architecture

22.	 In the build.gradle file of the app module, make sure that the following
plugins are added:

plugins {

 id 'com.android.application'

 id 'kotlin-android'

 id 'kotlin-kapt'

 id 'dagger.hilt.android.plugin'

}

23.	 In the same file, make sure that the following dependencies are added:

dependencies {

 implementation(project(path: ":presentation-

 post"))

 implementation(project(path: ":domain"))

 implementation(project(path: ":data-remote"))

 implementation(project(path: ":data-local"))

 implementation(project(path: ":data-repository"))

 implementation androidx.core

 implementation androidx.appCompat

 implementation material.material

 implementation androidx.composeUi

 implementation androidx.composeMaterial

 implementation androidx.composeUiToolingPreview

 implementation androidx.lifecycleRuntimeKtx

 implementation androidx.composeActivity

 implementation androidx.navigationCompose

 implementation androidx.hiltNavigationCompose

 implementation di.hiltAndroid

 kapt di.hiltCompiler

 testImplementation test.junit

}

24.	 In the app module, create a package called injection.
25.	 In the injection package, create a class called AppModule:

@Module

@InstallIn(SingletonComponent::class)

Presenting data with MVVM 251

class AppModule {

 @Provides

 fun provideUseCaseConfiguration() =

 UseCase.Configuration(Dispatchers.IO)

}

Here, we provide a UseCase.Configuration dependency, which will be
injected into all the UseCase subclasses.

26.	 In the app module, create a class called PostApplication:

@HiltAndroidApp

class PostApplication : Application()

27.	 Add the PostApplication class to the AndroidManifest.xml file of the
app module:

 <application

 …

 android:name=".PostApplication"

 …

 >

28.	 Modify the MainActivity class so that it will use the navigation library to go to
the PostListScreen function from the presentation-post module:

@AndroidEntryPoint

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 CleanAppTheme {

 Surface(color = MaterialTheme.

 colors.background) {

 val navController =

 rememberNavController()

 App(navController = navController)

 }

 }

252 Implementing an MVVM Architecture

 }

 }

}

@Composable

fun App(navController: NavHostController) {

 NavHost(navController, startDestination =

 "/posts") {

 composable(route = "/posts") {

 PostListScreen(hiltViewModel())

 }

 }

}

If we run the application, we should see the following screen:

Figure 8.4 – Output of Exercise 08.01

Presenting data in multiple modules 253

We can see the list of post titles and the author's name for each post. The total click count
is, for now, 0 because we haven't connected any logic and are yet to modify that value. We
will add that logic in the exercises that follow. If an error occurs while loading this list,
then we will see a snackbar with the description of the Exception object, and while the
data is loaded, an indeterminate progress bar will be displayed.

In this section, we have implemented the presentation layer of an Android application
using the MVVM architecture pattern and connected the layer to the domain layer of
the application to display data to the user. In the section that follows, we will expand
this layer across multiple modules and see how we can navigate between screens in
different modules.

Presenting data in multiple modules
In this section, we will look at how we can separate the presentation layer into multiple
modules, how we can handle the interaction between these modules, and how they can
share the same data.

When developing Android applications, we can group screens into different modules.
For example, we can group a login or registration flow inside a library module called
authentication, or if we have a settings section, we can group those screens inside a
separate module. Sometimes these screens will have commonalities with the rest of the
application, such as using the same loading progress bar or the same error mechanism.
Other times, these screens must navigate to screens from other modules. The question
we now need to ask is how this can happen without creating a dependency between the
two modules or other modules that are on the same level. Having a direct dependency on
these modules will risk creating a cyclic dependency as shown here:

Figure 8.5 – Module cyclic dependency

254 Implementing an MVVM Architecture

In Figure 8.5, we show what might happen if we want to navigate from the :auth module
to the :settings module and vice versa. This currently is impossible because of the
cyclic dependency between the two modules. To solve this issue, we will need to create a
new module. This module will hold the common logic shared between the two modules
and common data. This will look like the following figure:

Figure 8.6 – Common presentation module

In Figure 8.6, we added the :common module, which will hold reusable views or @
Composable functions and the navigation data from the app. Over time, this module
will grow, so it can be split into different modules holding different common features of
the app (navigation, UI, common logic, and so on).

If we are using Jetpack Compose for our application, then we can rely on the work done
in Exercise 03.02 – Navigating using Jetpack Compose of Chapter 3, Understanding Data
Presentation on Android, where we defined the following structure for the app navigation:

private const val ROUTE_USERS = "users"

private const val ROUTE_USER = "users/%s"

private const val ARG_USER_NAME = "name"

sealed class AppNavigation(val route: String, val

 argumentName: String = "") {

 object Users : AppNavigation(ROUTE_USERS)

 object User : AppNavigation(String.format(ROUTE_USER,

 "{$ARG_USER_NAME}"), ARG_USER_NAME) {

Presenting data in multiple modules 255

 fun routeForName(name: String) =

 String.format(ROUTE_USER, name)

 }

}

The routeForName method was called from the Users screen when a user in the
list was clicked, and then the NavHost method would use that route to open the User
screen. When dealing with multiple modules, the routes that will be shared by the
modules can be stored in the :common module so that each module will have access to
the route. The :app module, which will have NavHost, will then be able to navigate
between each screen.

When it comes to handling common logic between different modules, such as displaying
the same error or loading views, we can declare the composable functions inside the
:common module:

@Composable

fun Error(errorMessage: String) {

 …

}

@Composable

fun Loading() {

 …

}

If the same state is shared between the different screens in the different modules, we can
have something like the following:

@Composable

fun <T> CommonScreen(state: State<T>, onSuccess:

 @Composable (T) -> Unit) {

 when (result) {

 is State.Success -> {

 onSuccess(result.data)

 }

 is State.Error -> {

 Error(result.errorMessage)

 }

256 Implementing an MVVM Architecture

 is State.Loading -> {

 Loading()

 }

 }

}

Here, we will check the current state and display the common error and loading views,
leaving the screens themselves to only concern themselves with the successful state.

In this section, we have looked at how we can split the presentation layer into multiple
modules and how to handle the common elements between these modules. In the
following section, we will look at an exercise on how to achieve this. Splitting the
presentation layer into multiple modules will decrease application build times because
Gradle caching will only rebuild modules that contain changes. Another benefit comes in
the form of drawing boundaries around the application's scope, which will be beneficial
when it comes to exporting only certain features of an application.

Exercise 08.02 – Multi-module data presentation
Modify Exercise 08.01 – Implementing MVVM so that two new modules are created:
presentation-post and presentation-common.

The presentation-common module will have the following:

•	 The UiState class, which will be moved from the presentation-post
module.

•	 CommonResultConverter, which will be an abstract class with two methods:
convert, which is a concrete method that will convert the Result object into
a UiState object, and convertSuccess, which is an abstract method used to
convert the data from Result.Success.

•	 CommonScreen, which will have the @Composable method for displaying
the different types of UiState and two additional methods for displaying
the error snackbar and the progress bar. The two methods will be moved from
PostListScreen.

•	 AppNavigation, which will hold the routes to navigate to the list of posts, a single
post, and a single user.

Presenting data in multiple modules 257

•	 The presentation-post module will have an additional package to display
the information of a single post in the following format: Title: x and Body:
y, where x is the title of a post and y is the body of the post. To display this
information, a new ViewModel and Converter class will need to be created,
which will convert the data from GetPostUseCase. When the author text is
clicked, the app will navigate to the user screen, and when the Post list item is
clicked, the app will navigate to the post screen. When either of these is clicked,
UpdateInteractionUseCase is invoked to increase the number of clicks,
which will then be reflected in the list header.

•	 presentation-user will display the information about a single user in
the following format: Name: x, Username: y, and Email: z, where x, y, and z are
represented by the information inside the User entity. The user data will be loaded
from GetUserUseCase.

•	 The app module will be updated to handle the navigation between all these screens.

To complete this exercise, you will need to do the following:

1.	 Create the presentation-common module.
2.	 Move the UiState class and the Error and Loading @Composable functions

and create a new @Composable function, which will handle each type of
UiState object inside the CommonScreen file.

3.	 Create the CommonResultConverter class.
4.	 Create the AppNavigation class.
5.	 Modify the classes in presentation-post to reuse the preceding classes and

methods.
6.	 Create the PostScreen, PostViewModel, PostConverter, and PostModel

classes responsible for displaying the information about a single post.
7.	 Create the presentation-user module.
8.	 Create the UserScreen, UserViewModel, UserConverter, and UserModel

classes responsible for displaying the information about a single post.
9.	 Implement the navigation between the screens.
10.	 Add the logic to update the number of clicks inside PostListViewModel.

Follow these steps to complete the exercise:

1.	 Create the presentation-common and presentation-user Android library
modules.

2.	 Apply steps 3–5 from Exercise 08.01 – Implementing MVVM for each of these new
modules.

258 Implementing an MVVM Architecture

3.	 In the build.gradle file of the presentation-post and presentation-
user modules, make sure that the dependency to presentation-common is
added:

dependencies {

 …

 implementation(project(path: ":presentation-common"))

 …

}

4.	 In the presentation-common module, create a new package called state.
5.	 Move the UiState class into the preceding package.
6.	 In the same package, create the CommonResultConverter class:

abstract class CommonResultConverter<T : Any, R : Any> {

 fun convert(result: Result<T>): UiState<R> {

 return when (result) {

 is Result.Error -> {

 UiState.Error(result.exception.

 localizedMessage.orEmpty())

 }

 is Result.Success -> {

 UiState.Success(convertSuccess

 (result.data))

 }

 }

 }

 abstract fun convertSuccess(data: T): R

}

Here, we return UiState.Error for any Result.Error object with the
exception message, and for Result.Success, we return UiState.Success and
use an abstraction for the data inside the Result.Success object. This represents
a solution for how we can extract the common logic for displaying the error.

Presenting data in multiple modules 259

7.	 Modify the PostListConverter class from the presentation-post module
so that it will extend CommonResultConverter and provide an implementation
for the convertSuccess method:

class PostListConverter @Inject constructor(@
ApplicationContext private val context: Context) :

 CommonResultConverter<GetPostsWithUsersWithInteraction

 UseCase.Response, PostListModel>() {

 override fun convertSuccess(data:

 GetPostsWithUsersWithInteractionUseCase.

 Response): PostListModel {

 return PostListModel(

 headerText = context.getString(

 R.string.total_click_count,

 data.interaction.totalClicks

),

 items = data.posts.map {

 PostListItemModel(

 it.post.id,

 it.user.id,

 context.getString(R.string.author,

 it.user.name),

 context.getString(R.string.title,

 it.post.title)

)

 }

)

 }

}

Here, we only deal with converting
GetPostsWithUsersWithInteractionUseCase.Response into
PostListModel, allowing the parent class to handle the error only.

8.	 In the state package from the presentation-common module, create a new
file called CommonScreen.

260 Implementing an MVVM Architecture

9.	 In the CommonScreen file, add a CommonScreen @Composable method, which
will check UiState and invoke Error for UiState.Error and Loading for
UiState.Loading:

@Composable

fun <T : Any> CommonScreen(state: UiState<T>, onSuccess:
@Composable (T) -> Unit) {

 when (state) {

 is UiState.Loading -> {

 Loading()

 }

 is UiState.Error -> {

 Error(errorMessage = state.errorMessage)

 }

 is UiState.Success -> {

 onSuccess(state.data)

 }

 }

}

10.	 Move the Error and Loading @Composable functions from
PostListScreen into the CommonScreen file.

11.	 Modify the PostListScreen @Composable method from the
presentation-post module so that it will use the CommonScreen method:

@Composable

fun PostListScreen(

 viewModel: PostListViewModel

) {

 viewModel.loadPosts()

 viewModel.postListFlow.collectAsState().value.let

 { state ->

 CommonScreen(state = state) {

 PostList(postListModel = it)

 }

 }

}

Presenting data in multiple modules 261

Now the entire logic for converting and showing the list of posts will only
deal with the associated objects, leaving the error and loading scenarios in the
presentation-common module.

12.	 In presentation-common, create a new package called navigation.
13.	 In the navigation package, create a class called PostInput:

data class PostInput(val postId: Long)

This class is meant to represent the input that the post screen will require to load its
data.

14.	 In the same package, create a class called UserInput:

data class UserInput(val userId: Long)

This class is meant to represent the input that the user screen will require to load its
data.

15.	 In the same package, create a new class called NavRoutes:

private const val ROUTE_POSTS = "posts"

private const val ROUTE_POST = "posts/%s"

private const val ROUTE_USER = "users/%s"

private const val ARG_POST_ID = "postId"

private const val ARG_USER_ID = "userId"

sealed class NavRoutes(

 val route: String,

 val arguments: List<NamedNavArgument> =

 emptyList()

) {

 …

}

Here, we define the paths for each screen. The posts screen will have no arguments,
but the user and post screens will require the postId and userId values.

16.	 Create the Posts class in the NavRoutes class:

sealed class NavRoutes(

 val route: String,

 val arguments: List<NamedNavArgument> =

 emptyList()

262 Implementing an MVVM Architecture

) {

 object Posts : NavRoutes(ROUTE_POSTS)

}

17.	 Create the Post class in the NavRoutes class:

sealed class NavRoutes(

 val route: String,

 val arguments: List<NamedNavArgument> =

 emptyList()

) {

 object Post : NavRoutes(

 route = String.format(ROUTE_POST,

 "{$ARG_POST_ID}"),

 arguments = listOf(navArgument(ARG_POST_ID) {

 type = NavType.LongType

 })

) {

 fun routeForPost(postInput: PostInput) =

 String.format(ROUTE_POST, postInput.postId)

 fun fromEntry(entry: NavBackStackEntry):

 PostInput {

 return PostInput(entry.arguments?.

 getLong(ARG_POST_ID) ?: 0L)

 }

 }

}

Here, we will need to break down the Post input into the arguments for the URL.
The routeForPost method will create a /posts/1 URL for a Post object that
has the ID 1. The fromEntry method will re-assemble the PostInput object
from the navigation entry object. The reason we are taking this approach is that the
navigation library discourages the use of Parcelable, which means that passing
data between different screens will have to be done through the URL. To avoid any
issues with keeping track of the arguments across multiple modules, we can instead
use objects and keep the logic to read from arguments and construct the arguments
isolated to this class.

Presenting data in multiple modules 263

18.	 Create the User class inside the NavRoutes class:

sealed class NavRoutes(

 val route: String,

 val arguments: List<NamedNavArgument> = emptyList()

) {

 object User : NavRoutes(

 route = String.format(ROUTE_USER,

 "{$ARG_USER_ID}"),

 arguments = listOf(navArgument(ARG_USER_ID) {

 type = NavType.LongType

 })

) {

 fun routeForUser(userInput: UserInput) =

 String.format(ROUTE_USER, userInput.userId)

 fun fromEntry(entry: NavBackStackEntry):

 UserInput {

 return UserInput(entry.arguments?.getLong

 (ARG_USER_ID) ?: 0L)

 }

 }

}

Here, we apply the same principle as we did for the Post class.
19.	 Create a new package called single in the presentation-post module.
20.	 In the single package, create the PostModel class:

data class PostModel(

 val title: String,

 val body: String

)

21.	 In the single package, create the PostConverter class:

class PostConverter @Inject constructor(@
ApplicationContext private val context: Context) :

 CommonResultConverter<GetPostUseCase.Response,

264 Implementing an MVVM Architecture

 PostModel>() {

 override fun convertSuccess(data:

 GetPostUseCase.Response): PostModel {

 return PostModel(

 context.getString(R.string.title,

 data.post.title),

 context.getString(R.string.body,

 data.post.body)

)

 }

}

22.	 Add the body string to strings.xml of the presentation-post module:

<resources>

 …

 <string name="body">Body: %s</string>

</resources>

23.	 In the single package, create the PostViewModel class:

@HiltViewModel

class PostViewModel @Inject constructor(

 private val postUseCase: GetPostUseCase,

 private val postConverter: PostConverter

) : ViewModel() {

 private val _postFlow =

 MutableStateFlow<UiState<PostModel>>(UiState.
Loading)

 val postFlow: StateFlow<UiState<PostModel>> =

 _postFlow

 fun loadPost(postId: Long) {

 viewModelScope.launch {

 postUseCase.execute(GetPostUseCase.

 Request(postId))

Presenting data in multiple modules 265

 .map {

 postConverter.convert(it)

 }

 .collect {

 _postFlow.value = it

 }

 }

 }

}

Here, we are using GetPostUseCase to load the information about a particular
post and are using the converter defined earlier to convert the data into
PostModel, which will be set in the Flow object.

24.	 In the single package, create the PostScreen file, which will display the post
information:

@Composable

fun PostScreen(

 viewModel: PostViewModel,

 postInput: PostInput

) {

 viewModel.loadPost(postInput.postId)

 viewModel.postFlow.collectAsState().value.let {

 result ->

 CommonScreen(result) { postModel ->

 Post(postModel)

 }

 }

}

@Composable

fun Post(postModel: PostModel) {

 Column(modifier = Modifier.padding(16.dp)) {

 Text(text = postModel.title)

 Text(text = postModel.body)

 }

}

266 Implementing an MVVM Architecture

Here, we follow the same principle as for the PostListScreen file, where we
split into two methods, PostScreen for observing the UiState object and
PostListScreen to deal with drawing the user interface.

25.	 In the presentation-user module, create a new package called single.
26.	 In the single package, create a new class called UserModel:

data class UserModel(

 val name: String,

 val username: String,

 val email: String

)

27.	 In the single package, create a new class called UserConverter:

class UserConverter @Inject constructor(@
ApplicationContext private val context: Context) :

 CommonResultConverter<GetUserUseCase.Response,

 UserModel>() {

 override fun convertSuccess(data: GetUserUseCase.

 Response): UserModel {

 return UserModel(

 context.getString(R.string.name,

 data.user.name),

 context.getString(R.string.username,

 data.user.username),

 context.getString(R.string.email,

 data.user.email)

)

 }

}

28.	 Create the res/values/strings.xml file inside the main folder in the
presentation-user module:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="name">Name: %s</string>

 <string name="username">Username: %s</string>

Presenting data in multiple modules 267

 <string name="email">Email: %s</string>

</resources>

29.	 Inside the single package, create UserViewModel:

@HiltViewModel

class UserViewModel @Inject constructor(

 private val userUseCase: GetUserUseCase,

 private val converter: UserConverter

) : ViewModel() {

 private val _userFlow =

 MutableStateFlow<UiState<UserModel>>

 (UiState.Loading)

 val userFlow: StateFlow<UiState<UserModel>> =

 _userFlow

 fun loadUser(userId: Long) {

 viewModelScope.launch {

 userUseCase.execute

 (GetUserUseCase.Request(userId))

 .map {

 converter.convert(it)

 }

 .collect {

 _userFlow.value = it

 }

 }

 }

}

Here, we take the user data from GetUserUseCase, convert it using
UserConverter, and post the result in the Flow object.

30.	 In the single package, create the UserScreen file:

@Composable

fun UserScreen(

 viewModel: UserViewModel,

268 Implementing an MVVM Architecture

 userInput: UserInput

) {

 viewModel.loadUser(userInput.userId)

 viewModel.userFlow.collectAsState().value.let {

 result ->

 CommonScreen(result) { userModel ->

 User(userModel)

 }

 }

}

@Composable

fun User(userModel: UserModel) {

 Column(modifier = Modifier.padding(16.dp)) {

 Text(text = userModel.name)

 Text(text = userModel.username)

 Text(text = userModel.email)

 }

}

Here, we take the same approach as the other screens, where in one method, we
subscribe to changes in UiState, and in the other, we display the user information.

31.	 Add the click listeners in PostListScreen:

@Composable

fun PostList(

 postListModel: PostListModel,

 onRowClick: (PostListItemModel) -> Unit,

 onAuthorClick: (PostListItemModel) -> Unit

) {

 LazyColumn(modifier = Modifier.padding(16.dp)) {

 …

 items(postListModel.items) { item ->

 Column(modifier = Modifier

 .padding(16.dp)

 .clickable {

 onRowClick(item)

Presenting data in multiple modules 269

 }) {

 ClickableText(text = AnnotatedString(

 text = item.authorName), onClick =

 {

 onAuthorClick(item)

 })

 Text(text = item.title)

 }

 }

 }

}

In the preceding snippet, we specify click listeners for when the row is clicked and
for when the author is clicked. Because we are applying state hoisting, we want to
propagate the click listeners to the caller of the PostList method. To achieve
this, we define a parameter for each click listener as a lambda function that has as
input the row data and requires no result. More information about lambdas can be
found here: https://kotlinlang.org/docs/lambdas.html#function-
types.

32.	 Modify the PostListScreen @Composable method so that when the user is
clicked, we navigate to the user screen, and when the row is clicked, we navigate to
the post:

@Composable

fun PostListScreen(

 viewModel: PostListViewModel,

 navController: NavController

) {

 viewModel.loadPosts()

 viewModel.postListFlow.collectAsState().value.let

 { state ->

 CommonScreen(state = state) {

 PostList(it, { postListItem ->

 navController.navigate(NavRoutes.Post.

 routeForPost(PostInput

 (postListItem.id)))

 }) { postListItem ->

 navController.navigate(NavRoutes.User.

270 Implementing an MVVM Architecture

 routeForUser(UserInput

 (postListItem.userId)))

 }

 }

 }

}

33.	 In build.gradle of the app module, make sure that the dependencies to
presentation-common and presentation-user are added:

dependencies {

 …

 implementation(project(path: ":presentation-

 user"))

 implementation(project(path: ":presentation-

 common"))

 …

}

34.	 In the MainActivity file, modify the App method so that the navigation between
the different screens is implemented:

@Composable

fun App(navController: NavHostController) {

 NavHost(navController, startDestination =

 NavRoutes.Posts.route) {

 composable(route = NavRoutes.Posts.route) {

 PostListScreen(hiltViewModel(),

 navController)

 }

 composable(

 route = NavRoutes.Post.route,

 arguments = NavRoutes.Post.arguments

) {

 PostScreen(

 hiltViewModel(),

 NavRoutes.Post.fromEntry(it)

)

Presenting data in multiple modules 271

 }

 composable(

 route = NavRoutes.User.route,

 arguments = NavRoutes.User.arguments

) {

 UserScreen(

 hiltViewModel(),

 NavRoutes.User.fromEntry(it)

)

 }

 }

}

Here, we add all the screens in the application to the navigation graph, and in
the case of UserScreen and PostScreen, we extract the UserInput and
PostInput objects from the navigation graph entries. We will now need to add
the interaction.

35.	 Add an Interaction field inside PostListModel:

data class PostListModel(

 …

 val interaction: Interaction

)

36.	 Modify PostListConverter to include the interaction field:

class PostListConverter @Inject constructor(@
ApplicationContext private val context: Context) :

 CommonResultConverter<GetPostsWithUsersWithInteraction

 UseCase.Response, PostListModel>() {

 override fun convertSuccess(data:

 GetPostsWithUsersWithInteractionUseCase.

 Response): PostListModel {

 return PostListModel(

 …

 interaction = data.interaction

)

272 Implementing an MVVM Architecture

 }

}

37.	 Add a reference to UpdateInteractionUseCase in PostListViewModel
and a method to update the interaction:

@HiltViewModel

class PostListViewModel @Inject constructor(

 …

 private val updateInteractionUseCase:

 UpdateInteractionUseCase

) : ViewModel() {

 …

 fun updateInteraction(interaction: Interaction) {

 viewModelScope.launch {

 updateInteractionUseCase.execute(

 UpdateInteractionUseCase.Request(

 interaction.copy(

 totalClicks = interaction.

 totalClicks + 1

)

)

).collect()

 }

 }

}

38.	 Modify the PostListScreen @Composable method so that it will call to update
the interaction for each click:

@Composable

fun PostListScreen(

 viewModel: PostListViewModel,

 navController: NavController

) {

 …

 viewModel.postListFlow.collectAsState().value.let

 { state ->

Presenting data in multiple modules 273

 CommonScreen(state = state) {

 PostList(it, { postListItem ->

 viewModel.updateInteraction(it.
interaction)

 …

 }) { postListItem ->

 viewModel.updateInteraction(it.
interaction)

 …

 }

 }

 }

}

If we run the application, we will see an output like the one in the following figure:

Figure 8.7 – Output of Exercise 08.02

274 Implementing an MVVM Architecture

We can see from Figure 8.7 that when the row is clicked, we are taken to the screen
displaying the post information, and when the author is clicked, we are taken to the user
information. By placing the NavRoutes class in the presentation-common module,
we can navigate from the post list on a screen located in the same module (post) and a
screen located in a different module (user). The solution of creating additional modules
is a good way to avoid cyclic dependencies not only for modules in the presentation layer
but also for modules in the other layers as well.

In this exercise, we have learned how to split the presentation layer into separate modules
and how we can use a common module to hold shared logic and data required by all
the modules in the layer. This is a technique that can be used for other layers in the
application if we want them split up as well.

Summary
In this chapter, we explored the presentation layer of an Android application and a few
different approaches for implementing this layer, such as MVC, MVP, and MVVM. We
decided to focus on the MVVM approach because of the many benefits involving the life
cycle and the compatibility with Jetpack Compose. We then looked at what happens when
we want to split the presentation layer across multiple modules and how we can solve the
common logic between these modules. In the chapter that follows, we will further build
upon the MVVM pattern and study the Model-View-Intent (MVI) pattern, which further
takes advantage of the Observable pattern to incorporate the user actions into states that
can be observed.

9
Implementing an
MVI Architecture

In this chapter, we will introduce the concept of Model-View-Intent (MVI) and the
benefits it provides for managing the state of an application. We will begin by analyzing
what MVI is and then move on to implementing it using Kotlin flows. In this chapter's
exercise, we will build upon the previous chapter's exercises, and we will re-implement
them using the MVI pattern to highlight how this pattern can be integrated into the
presentation layer of an application with multiple modules.

In this chapter, we will cover the following topics:

•	 Introducing MVI

•	 Implementing MVI with Kotlin flows

By the end of the chapter, you will be able to implement the MVI architecture pattern
inside a multimodule Android application, using Kotlin flows.

276 Implementing an MVI Architecture

Technical requirements
The hardware and software requirements are as follows:

•	 Android Studio Arctic Fox 2020.3.1 patch 3

The code files for this chapter can be found here: https://github.com/
PacktPublishing/Clean-Android-Architecture/tree/main/Chapter9.

Check out the following video to see the Code in Action: https://bit.ly/3FYZKLn

Introducing MVI
In this section, we will look at what the MVI architecture pattern is, the problems it is
trying to solve, and the solutions it presents for solving those problems.

Let's imagine you need to develop a configuration screen for an application. It will load
the existing configuration and it will need to toggle various switches and prepopulate
input fields with the existing data. After that data is loaded, then the user can modify each
of those fields. To achieve this, you would probably need to keep mutable references for
the data represented in those fields so that when the user changes a value, the reference
changes.

This may pose a problem because of the mutability of those fields, especially when dealing
with concurrent operations or their order. A solution to this problem is to make the data
immutable and combine it into a state that the user interface can observe. Any changes
the app or user will need to make on the user interfaces will be through a reactive data
flow. The flow will then create a new state representing the change and update the user
interface.

This is essentially how MVI operates. In MVI, the View plays the same role as in MVP or
MVVM and the Model holds the state of the user interface, and it represents the single
source of truth. The Intent is represented by any changes that should be made to the state,
which will then be updated. In Figure 9.1, we can see how the View will send an Intent to
the Model, which will then trigger a change in state, which will update the View:

Note
The term Intent in the context of MVI is different from the Android Intent
class used to interact with different Android components.

Introducing MVI 277

Figure 9.1 – MVI diagram

What is missing from this diagram is the equivalent of a ViewModel or a Presenter. This
is because the MVI pattern isn't a replacement for those patterns but instead builds on top
of them.

To visualize how this might look, let's look at an example of a ViewModel:

class MyViewModel @Inject constructor(

 private val getMyDataUseCase: GetMyDataUseCase

) : ViewModel() {

 private val _myDataFlow =

 MutableStateFlow<MyData>(MyData())

 val myDataFlow: StateFlow<MyData> = _myDataFlow

 var text: String = ""

 fun loadMyData() {

 viewModelScope.launch {

 getMyDataUseCase.execute

 (GetPostsWithUsersWithInteractionUseCase.

 Request)

 .collect {

 _myDataFlow.value = it

 }

 }

 }

}

278 Implementing an MVI Architecture

In the preceding example, we define a class named MyViewModel in which we have a
use case to load data and a text variable that will be changed by the View when the user
changes it. We can see that the text variable is a mutable variable accessible from the
View. We also have a StateFlow variable holding the data to be loaded and we have a
method to load the data. To transition the preceding code to MVI, we will need to first
define a state that will hold the data to be loaded and the text. This will represent our
source of truth. For the preceding example, this state will look as in the following example:

data class MyState(

 val myData: MyData = MyData(),

 val text: String = ""

)

In the MyState class, we move the data to be loaded and the text to be changed. Now, we
will need to identify the actions; in this case, we have two actions: loading the data and
updating the value of the text with a new value introduced by the user:

 sealed class MyAction {

 object LoadAction : MyAction()

 data class UpdateAction(val text: String) :

 MyAction()

 }

In the preceding example, we have represented the action as a sealed class and defined two
actions for loading and updating the text. Next, we will need to create the appropriate data
flows for handling the actions and managing the state:

 private val _myStateFlow = MutableStateFlow<MyState>

 (MyState())

 val myStateFlow: StateFlow<MyState> = _myDataFlow

 private val _actionFlow: MutableSharedFlow<MyAction> =

 MutableSharedFlow()

In the preceding example, we have changed the StateFlow variables to hold the state
object defined previously and added a similar SharedFlow variable, which will be
responsible for managing the actions inserted by the user. We will now need to subscribe
and handle the actions:

class MyViewModel @Inject constructor(

 private val getMyDataUseCase: GetMyDataUseCase

) : ViewModel() {

Introducing MVI 279

 …

 init {

 viewModelScope.launch {

 action.collect { action ->

 when (action) {

 is MyViewModel.MyAction.LoadAction -> {

 loadMyData()

 }

 is MyViewModel.MyAction.UpdateAction -> {

 _myDataFlow.emit(_myDataFlow.value.
copy(text =

 action.text))

 }

 }

 }

 }

 }

 fun submitAction(action: MyAction) {

 viewModelScope.launch {

 _action.emit(action)

 }

 }

 private fun loadMyData() {

 getMyDataUseCase.execute

 (GetPostsWithUsersWithInteractionUseCase.

 Request)

 .collect {

 _myDataFlow.value = it

 }

 }

 …

}

280 Implementing an MVI Architecture

In the init block, we are collecting the actions and then, for each action, we perform
the required operation. The View will invoke the submitAction method and pass the
action it wants the ViewModel to perform. For this example, MyAction plays the role
of the Intent within the MVI context and the ViewModel will sit between the View and
Model and will be responsible for managing the flow of data between the Model and the
View, as well as managing the state.

When it comes to the implementation of the MVI pattern, there are many different
variations for different technologies and different architecture patterns. From RxJava to
LiveData, to flows and coroutines, to MVVM and MVP, there are different approaches
to the pattern with different variations.

Some are built using concepts such as state machines, others use basic streams, and others
use third-party open source libraries. From the preceding example, we can see that the
pattern introduces a little bit of boilerplate code, so it is important to perform research
and monitor the initial introduction of the pattern into any application. In the section that
follows, we will look at how we can implement MVI using Kotlin flows.

Implementing MVI with Kotlin flows
In this section, we will look at how we can implement the MVI architecture pattern using
Kotlin flows and the benefits and pitfalls of this approach.

In the previous section, we defined an MVI approach using StateFlow and
SharedFlow, as in the following example:

 private val _myStateFlow =
MutableStateFlow<MyState>(MyState())

 val myStateFlow: StateFlow<MyState> = _myDataFlow

 private val actionFlow: MutableSharedFlow<MyAction> =
MutableSharedFlow()

The different types of flows used here serve different purposes. MutableStateFlow will
emit the last value held, which is good for the user interface because we want it to display
the last data loaded, like how LiveData works. SharedFlow doesn't have this feature,
which is useful for actions because we do not want the last action to be emitted twice.
Another aspect we will need to consider is one-shot events, which should be emitted
using a channel flow. This will be useful when the View will need to respond to events in
a channel to display a toast alert or handle navigation to a new screen. We can apply this
using the following:

class MyViewModel @Inject constructor(

Implementing MVI with Kotlin flows 281

 private val getMyDataUseCase: GetMyDataUseCase

) : ViewModel() {

 …

 private val _myStateFlow = MutableStateFlow<MyState>

 (MyState())

 val myStateFlow: StateFlow<MyState> = _myDataFlow

 private val actionFlow: MutableSharedFlow<MyAction> =

 MutableSharedFlow()

 private val _myOneOffFlow = Channel<MyOneOffEvent>()

 val myOneOffFlow = _myOneOffFlow.receiveAsFlow()

 …

}

In the preceding example, we have integrated the Channel information with the rest of
the ViewModel. Because an application will end up having multiple ViewModels, we
can create a template that will be used across the application. We can start by defining
abstractions for each of the state, action, and one-off events:

interface UiState

interface UiAction

interface UiSingleEvent

Here, we have opted for a simple interface to represent each of the flows of data the
ViewModel will use. We can next define a template for the ViewModel, which can be
inherited by the ViewModels used in the application:

abstract class MviViewModel<S : UiState, A : UiAction, E :
UiSingleEvent> : ViewModel() {

 private val _uiStateFlow: MutableStateFlow<S> by lazy {

 MutableStateFlow(initState())

 }

 val uiStateFlow: StateFlow<S> = _uiStateFlow

 private val actionFlow: MutableSharedFlow<A> =

 MutableSharedFlow()

 private val _singleEventFlow = Channel<E>()

 val singleEventFlow = _singleEventFlow.receiveAsFlow()

282 Implementing an MVI Architecture

 …

}

In the preceding example, we have used generics for each of the flows that the
ViewModel will use. This creates a problem for MutableStateFlow, which requires
an initial value. Because we don't have any concrete value to initialize, we will need to
create an abstract method that will provide the initial value:

abstract class MviViewModel<S : UiState, A : UiAction, E :
UiSingleEvent> : ViewModel() {

 …

 init {

 viewModelScope.launch {

 actionFlow.collect {

 handleAction(it)

 }

 }

 }

 abstract fun initState(): S

 abstract fun handleAction(action: A)

}

In addition to the initState abstraction, we have also added the handleAction
abstraction. This will be called when new actions are submitted because of user actions
or a screen load. Because the mutable variables are set to private, we will need to expose
methods that emit events into these flows:

abstract class MviViewModel<S : UiState, A : UiAction, E :

 UiSingleEvent> : ViewModel() {

 …

 fun submitAction(action: A) {

 viewModelScope.launch {

 actionFlow.emit(action)

 }

 }

Implementing MVI with Kotlin flows 283

 fun submitState(state: S) {

 viewModelScope.launch {

 _uiStateFlow.value = state

 }

 }

 fun submitSingleEvent(event: E) {

 viewModelScope.launch {

 _singleEventFlow.send(event)

 }

 }

}

In the preceding example, we have added the methods that emit, send, or change the value
on each of the specific data flows. To implement the template for a specific scenario, we
will need to create concretions for UiState:

sealed class MyUiState : UiState {

 data class Success(val myData: MyData) : MyUiState()

 object Error : MyUiState()

 object Loading : MyUiState()

}

In the preceding example, we have defined different states that the screen might have. We
can now create a concretion for UiAction:

sealed class MyUiAction : UiAction {

 object Load : MyUiAction()

 object Click : MyUiAction()

}

Here, we defined an action for when the data will need to be loaded and another for when
something is clicked on the user interface:

sealed class MyUiSingleEvent : UiSingleEvent {

 data class ShowToast(val text: String) :

 MyUiSingleEvent()

}

284 Implementing an MVI Architecture

For the single event fired, we have defined a show toast alert event. Finally, we can
implement the concretion for the ViewModel:

class MyViewModel : MviViewModel<MyUiState, MyUiAction,

 MyUiSingleEvent>() {

 override fun initState(): MyUiState = MyUiState.Loading

 override fun handleAction(action: MyUiAction) {

 when (action) {

 is MyUiAction.Load -> {

 viewModelScope.launch {

 val state: UiState = // Fetch UI state

 submitState(state)

 }

 }

 is MyUiAction.Click -> {

 // Handle logic for clicks

 submitSingleEvent(MyUiSingleEvent.

 ShowToast("Toast"))

 }

 }

 }

}

In the preceding example, we have extended the MviViewModel class and passed
MyUiState, MyUiAction, and MyUiSingleEvent for the generics. In the
initState method, we return the Loading state, and in the handleAction method,
we check the actions and then load the data or handle the click event, which will then
submit the event to show a toast alert.

If we want to integrate the ViewModel with Jetpack Compose, we will have to use
something like the following example:

@Composable

fun MyScreen(

 viewModel: MyViewModel

) {

 viewModel.submitAction(MyUiAction.Load)

Implementing MVI with Kotlin flows 285

 viewModel.uiStateFlow.collectAsState().value.let {

 state ->

 when (state) {

 is MyUiState.Loading -> {

 }

 is MyUiState.Success -> {

 MySuccessScreen(state.myData) {

 viewModel.submitAction(MyUiAction.

 Click)

 }

 }

 is MyUiState.Error -> {

 }

 }

 }

}

We can see that observing UiState will remain the same as for MVVM; however, if we
wish to notify the ViewModel of any changes, we will need to use the submitAction
method. For the UiSingleEvents object, we will need to use the LaunchedEffect
function because we don't want Jetpack Compose to keep recomposing and re-executing
the same block; we only want it to be executed once, so we will need to use something
such as the following:

@Composable

fun MyScreen(

 viewModel: MyViewModel

) {

 …

 LaunchedEffect(Unit, {

 viewModel.singleEventFlow.collectLatest {

 when (it) {

 is MyUiSingleEvent.ShowToast -> {

 // Show Toast

 }

286 Implementing an MVI Architecture

 }

 }

 })

}

In this example, we collect the data from Channel inside the LaunchedEffect
method and then show a toast alert when the ShowToast event is received.
LaunchedEffect can also be used to ensure that we do not trigger multiple data loads
because of the Jetpack Compose recomposition mechanism:

@Composable

fun MyScreen(

 viewModel: MyViewModel

) {

 LaunchedEffect(Unit, {

 viewModel.submitAction(MyUiAction.Load)

 }

}

In the preceding snippet, we have moved the call to submitAction inside
LaunchedEffect, to avoid triggering the loading multiple times. More information
about Jetpack Compose side effects can be found here: https://developer.
android.com/jetpack/compose/side-effects.

In this section, we have shown how we can integrate the MVI architecture pattern with
flows and Jetpack Compose. We have seen how we have translated the interactions
between the View and the ViewModel into intents using the UiAction interface and
the implementations of this interface. We have also seen some of the downsides of the
pattern because of the addition of boilerplate code and, in the case of Jetpack Compose,
having to use methods such as LaunchedEffect and Channel for emitting one-off
events. In the following section, we will create an application in which we will migrate a
previous exercise to use MVI.

Implementing MVI with Kotlin flows 287

Exercise 09.01 – Transitioning to MVI
Modify Exercise 08.02 – Multi-module data presentation from Chapter 8, Implementing
an MVVM Architecture, so that the presentation layer uses the MVI architecture pattern.
The UiState class will remain and represent the state of each screen. New interfaces
will be added in the presentation-common module representing actions and one-off
events. In the same module, an MviViewModel abstract class will be implemented,
which will be the template for the other ViewModels used in the application. For
PostListViewModel, we will create new user actions for loading the data, clicking on
the post, and clicking on the author, and two new one-off events will be needed for opening
each of those screens. For PostViewModel and UserViewModel, we will create only a
single user action, which will be responsible for loading the data on each screen.

To complete this exercise, you will need to do the following:

1.	 In presentation-common, create an interface called UiAction and an
interface called UiSingleEvent, and then create the MviViewModel template.

2.	 In the list package of the presentation-post module, create a sealed
class called PostListUiAction, which will contain three subclasses
called Load, UserClick, and PostClick. Then, create a sealed class
called PostListUiSingleEvent, which will have two subclasses named
OpenUserScreen and OpenPostScreen. Then, modify PostListViewModel
and PostListScreen to use the specified actions and events.

3.	 In the single package of the presentation-post module, create a sealed
class called PostUiAction, which will have one subclass named Load, which will
contain the ID of the post. Then, modify PostViewModel and PostScreen to
instead use the specified action.

4.	 In the single package of the presentation-user module, create a sealed
class called UserUiAction, which will have one subclass named Load, which will
contain the ID of the user. Then, modify UserViewModel and UserScreen to
instead use the specified action.

288 Implementing an MVI Architecture

Follow these steps to complete the exercise:

1.	 In the state package of the presentation-common module, create an interface
called UiAction:

interface UiAction

2.	 In the same package, create an interface called UiSingleEvent:

interface UiSingleEvent

3.	 In the same package, create an abstract class called MviViewModel:

abstract class MviViewModel<T : Any, S : UiState<T>, A :
UiAction, E : UiSingleEvent> : ViewModel() {

}

Because we are using the UiState class with generics, we will need to also supply
that generic field in the generic specification of MviViewModel.

4.	 In the MviViewModel class, add the necessary flows and channels that will hold
the states, actions, and events:

abstract class MviViewModel<T : Any, S : UiState<T>, A :
UiAction, E : UiSingleEvent> : ViewModel() {

 private val _uiStateFlow: MutableStateFlow<S> by

 lazy {

 MutableStateFlow(initState())

 }

 val uiStateFlow: StateFlow<S> = _uiStateFlow

 private val actionFlow: MutableSharedFlow<A> =

 MutableSharedFlow()

 private val _singleEventFlow = Channel<E>()

 val singleEventFlow = _singleEventFlow.

 receiveAsFlow()

}

In this snippet, we have defined StateFlow variables to hold the last value
that was emitted, which will be used to manage the state of the user interface,
SharedFlow, which is used for handling user actions, and Channel for handling
emitting one-off events. In the MviViewModel class, we are also defining generics
so that we bind states, actions, and one-off events to their respective types.

Implementing MVI with Kotlin flows 289

5.	 In MviViewModel, add the abstract methods for initializing the state and handling
the actions:

abstract class MviViewModel<T : Any, S : UiState<T>, A :
UiAction, E : UiSingleEvent> : ViewModel() {

 …

 init {

 viewModelScope.launch {

 actionFlow.collect {

 handleAction(it)

 }

 }

 }

 abstract fun initState(): S

 abstract fun handleAction(action: A)

}

In this snippet, we are adding the abstraction required to provide an initial value for
StateFlow, and then we handle the collection of the user actions, which will be
handled in the handleAction method.

6.	 In MviViewModel, add the required methods to submit the state, events,
and actions:

abstract class MviViewModel<T : Any, S : UiState<T>, A :
UiAction, E : UiSingleEvent> : ViewModel() {

 …

 fun submitAction(action: A) {

 viewModelScope.launch {

 actionFlow.emit(action)

 }

 }

 fun submitState(state: S) {

 viewModelScope.launch {

 _uiStateFlow.value = state

 }

290 Implementing an MVI Architecture

 }

 fun submitSingleEvent(event: E) {

 viewModelScope.launch {

 _singleEventFlow.send(event)

 }

 }

}

In this snippet, we are defining a set of methods to emit data into the two Flow
objects and the Channel object.

7.	 In the list package of the presentation-post module, create the
PostListUiAction class and its subclasses:

sealed class PostListUiAction : UiAction {

 object Load : PostListUiAction()

 data class UserClick(val userId: Long, val

 interaction: Interaction) : PostListUiAction()

 data class PostClick(val postId: Long, val

 interaction: Interaction) : PostListUiAction()

}

Here, we define a sealed class for loading the data and clicking on the user and the
post. Each of them will implement the UiAction interface.

8.	 In the same package, create the PostListUiAction class and its subclasses:

sealed class PostListUiSingleEvent : UiSingleEvent {

 data class OpenUserScreen(val navRoute: String) :

 PostListUiSingleEvent()

 data class OpenPostScreen(val navRoute: String) :

 PostListUiSingleEvent()

}

Here, we define a sealed class for the one-off events that will be emitted when we
want the user and post screens to be opened, which is why we are implementing
UiSingleEvent.

9.	 In the same package, modify PostListViewModel to extend MviViewModel:

@HiltViewModel

Implementing MVI with Kotlin flows 291

class PostListViewModel @Inject constructor(

 private val useCase:

 GetPostsWithUsersWithInteractionUseCase,

 private val converter: PostListConverter,

 private val updateInteractionUseCase:

 UpdateInteractionUseCase

) : MviViewModel<PostListModel, UiState<PostListModel>

 , PostListUiAction, PostListUiSingleEvent>() {

 …

}

In this snippet, we are extending MviViewModel and providing the types we
defined previously as well as the existing PostListModel type to the generic
fields. This is because we want this ViewModel to be bound to the data, actions,
and one-off events that occur in PostListScreen.

10.	 Implement the initState method in the PostListViewModel class:

@HiltViewModel

class PostListViewModel @Inject constructor(

 …

) : MviViewModel<PostListModel, UiState<PostListModel>

 , PostListUiAction, PostListUiSingleEvent>() {

 override fun initState(): UiState<PostListModel> =

 UiState.Loading

}

In this snippet, we are implementing the initState method and providing the
UiState.Loading value, which will in turn make the uiStateFlow field from
the parent class be initialized with the Loading value.

11.	 Implement the handleAction method in the PostListViewModel class:

@HiltViewModel

class PostListViewModel @Inject constructor(

 …

) : MviViewModel<PostListModel, UiState<PostListModel>

 , PostListUiAction, PostListUiSingleEvent>() {

 …

292 Implementing an MVI Architecture

 override fun handleAction(action:

 PostListUiAction) {

 when (action) {

 is PostListUiAction.Load -> {

 loadPosts()

 }

 is PostListUiAction.PostClick -> {

 updateInteraction(action.interaction)

 submitSingleEvent(

 PostListUiSingleEvent.

 OpenPostScreen(

 NavRoutes.Post.routeForPost(

 PostInput(action.postId)

)

)

)

 }

 is PostListUiAction.UserClick -> {

 updateInteraction(action.interaction)

 submitSingleEvent(

 PostListUiSingleEvent.

 OpenUserScreen(

 NavRoutes.User.routeForUser(

 UserInput(action.userId)

)

)

)

 }

 }

 }

}

In this snippet, we are implementing the handleAction method, which will
check what action we will need to handle and perform the necessary operation
for each. For loading, we will invoke the loadPosts method, and for clicking on
a user and a post, we will invoke the updateInteraction method and then
submit a one-off event to open the user and post screens.

Implementing MVI with Kotlin flows 293

12.	 Implement the loadPosts method in the PostListViewModel class:

@HiltViewModel

class PostListViewModel @Inject constructor(

 …

) : MviViewModel<PostListModel, UiState<PostListModel>

 , PostListUiAction, PostListUiSingleEvent>() {

 …

 private fun loadPosts() {

 viewModelScope.launch {

 useCase.execute

 (GetPostsWithUsersWithInteractionUseCase.

 Request)

 .map {

 converter.convert(it)

 }

 .collect {

 submitState(it)

 }

 }

 }

}

In this snippet, we load the data from
GetPostsWithUsersWithInteractionUseCase and collect it and update
uiStateFlow through the submitState method inherited from the parent class.

13.	 Implement the updateInteraction method in the PostListViewModel
class:

@HiltViewModel

class PostListViewModel @Inject constructor(

 …

) : MviViewModel<PostListModel, UiState<PostListModel>

 , PostListUiAction, PostListUiSingleEvent>() {

 …

 private fun updateInteraction(interaction:

 Interaction) {

 viewModelScope.launch {

294 Implementing an MVI Architecture

 updateInteractionUseCase.execute(

 UpdateInteractionUseCase.Request(

 interaction.copy(

 totalClicks = interaction.

 totalClicks + 1

)

)

).collect()

 }

 }

}

In this method, we implement the updateInteraction method,
which will submit a new value with an incremented click count using
UpdateInteractionUseCase.

14.	 Modify the PostListScreen method in the PostListScreen file in the
list package in the presentation-post module so that it will instead use the
submitAction method:

@Composable

fun PostListScreen(

 viewModel: PostListViewModel,

 navController: NavController

) {

 LaunchedEffect(Unit) {

 viewModel.submitAction(PostListUiAction.Load)

 }

 viewModel.uiStateFlow.collectAsState().value.let {

 state ->

 CommonScreen(state = state) {

 PostList(it, { postListItem ->

 viewModel.submitAction

 (PostListUiAction.PostClick

 (postListItem.id, it.interaction))

 }) { postListItem ->

 viewModel.submitAction

 (PostListUiAction.UserClick

Implementing MVI with Kotlin flows 295

 (postListItem.id, it.interaction))

 }

 }

 }

}

Here, we are changing how we interact with PostListViewModel. Instead
of invoking each separate method for loading and updating the interaction, we
instead use the submitAction method from MviViewModel. In order to load
the data, we are using LaunchedEffect so that when Jetpack Compose triggers
recomposition, the data load won't be retriggered. We are also subscribing to
uiStateFlow instead of postListFlow, which no longer exists.

15.	 In the same method, subscribe to singleEventFlow so that it opens
PostScreen and UserScreen when the appropriate events are received:

@Composable

fun PostListScreen(

 viewModel: PostListViewModel,

 navController: NavController

) {

 …

 LaunchedEffect(Unit) {

 viewModel.singleEventFlow.collectLatest {

 when (it) {

 is PostListUiSingleEvent.

 OpenPostScreen -> { navController.
navigate

 (it.navRoute)

 }

 is PostListUiSingleEvent.

 OpenUserScreen -> {

 navController.navigate

 (it.navRoute)

 }

 }

 }

 }

}

296 Implementing an MVI Architecture

In this snippet, we will need to monitor the events from singleEventFlow and
then check the events emitted and open the appropriate screen.

16.	 In the single package of the presentation-post module, create the
PostUiAction class and its subclass:

sealed class PostUiAction : UiAction {

 data class Load(val postId: Long) : PostUiAction()

}

17.	 In the same package, modify PostViewModel so that it extends MviViewModel:

@HiltViewModel

class PostViewModel @Inject constructor(

 private val postUseCase: GetPostUseCase,

 private val postConverter: PostConverter

) : MviViewModel<PostModel, UiState<PostModel>,

 PostUiAction, UiSingleEvent>() {

}

Here, we are using the newly created PostUiAction, but because we have no
one-off events to subscribe to, we will use the UiSingleEvent interface.

18.	 In the same class, implement the initState and handleAction methods:

@HiltViewModel

class PostViewModel @Inject constructor(

 …

) : MviViewModel<PostModel, UiState<PostModel>,

 PostUiAction, UiSingleEvent>() {

 override fun initState(): UiState<PostModel> =

 UiState.Loading

 override fun handleAction(action: PostUiAction) {

 when (action) {

 is PostUiAction.Load -> {

 loadPost(action.postId)

 }

 }

 }

Implementing MVI with Kotlin flows 297

 private fun loadPost(postId: Long) {

 viewModelScope.launch {

 postUseCase.execute

 (GetPostUseCase.Request(postId))

 .map {

 postConverter.convert(it)

 }

 .collect {

 submitState(it)

 }

 }

 }

}

Here, we are implementing the initState method and returning the UiState.
Loading value and the handleAction method. For handleAction, we only
have the action to load the data, which will use GetPostUseCase to retrieve the
post data and then update uiStateFlow through the submitState method.

19.	 Modify the PostScreen method from the PostScreen file in the single
package in the presentation-post module so that it instead uses the
Load action:

@Composable

fun PostScreen(

 viewModel: PostViewModel,

 postInput: PostInput

) {

 viewModel.uiStateFlow.collectAsState().value.let {

 result ->

 CommonScreen(result) { postModel ->

 Post(postModel)

 }

 }

 LaunchedEffect(postInput.postId) {

 viewModel.submitAction(PostUiAction.

 Load(postInput.postId))

298 Implementing an MVI Architecture

 }

}

In this snippet, we are following the same principle as in PostListScreen where
we replace the interaction with PostViewModel to use the submitAction
method and use LaunchedEffect to isolate the data loading.

20.	 In the single package of the presentation-user module, create the
UserUiAction class and its subclass:

sealed class UserUiAction : UiAction {

 data class Load(val userId: Long) : UserUiAction()

}

21.	 In the same package, modify UserViewModel so that it extends the
MviViewModel class:

@HiltViewModel

class UserViewModel @Inject constructor(

 private val userUseCase: GetUserUseCase,

 private val converter: UserConverter

) : MviViewModel<UserModel, UiState<UserModel>,

 UserUiAction, UiSingleEvent>() {

}

Here, we are using the newly created UserUiAction, but because we have no
one-off events to subscribe to, we will use the UiSingleEvent interface.

22.	 In the same class, implement the initState and handleAction methods:

@HiltViewModel

class UserViewModel @Inject constructor(

 …

) : MviViewModel<UserModel, UiState<UserModel>,

 UserUiAction, UiSingleEvent>() {

 override fun initState(): UiState<UserModel> =

 UiState.Loading

 override fun handleAction(action: UserUiAction) {

Implementing MVI with Kotlin flows 299

 when (action) {

 is UserUiAction.Load -> {

 loadUser(action.userId)

 }

 }

 }

 private fun loadUser(userId: Long) {

 viewModelScope.launch {

 userUseCase.execute

 (GetUserUseCase.Request(userId))

 .map {

 converter.convert(it)

 }

 .collect {

 submitState(it)

 }

 }

 }

}

Here, we are following the same principle as for PostViewModel, which is to
implement the initState method to return UiState.Loading, then in
handleAction, we check the type, and for the Load action, we load the
user information.

23.	 Modify the UserScreen method from the UserScreen file in the single
package in the presentation-user module so that it instead uses the
Load action:

@Composable

fun UserScreen(

 viewModel: UserViewModel,

 userInput: UserInput

) {

 viewModel.uiStateFlow.collectAsState().value.let {

 result ->

 CommonScreen(result) { userModel ->

300 Implementing an MVI Architecture

 User(userModel)

 }

 }

 LaunchedEffect(userInput.userId) {

 viewModel.submitAction(UserUiAction.

 Load(userInput.userId))

 }

}

In this snippet, we are following the same principle as in PostScreen where we
replace the interaction with UserViewModel to use the submitAction method
and use LaunchedEffect to isolate the data loading.

If we run the application, we will see the same output as in Exercise 08.02 – Multi-module
data presentation:

Figure 9.2 – Output of Exercise 09.01

Summary 301

After introducing MVI into the exercise, we can see that we already had the groundwork
because of how Jetpack Compose requires states to manage the user interface. This
represents one of the reasons we ended up creating the UiState class in previous
chapters. We have also observed the downsides of the pattern through the addition of
boilerplate code and the handling of one-off events, the latter not being limited to MVI.
The use of MviViewModel shows how we can have the same template across different
modules of the presentation layer.

From a Clean Architecture perspective, we can see that the changes we have done in our
presentation layer haven't affected the rest of the layers of the application, which is a sign
that we are going down the right path.

Summary
In this chapter, we studied the MVI architecture pattern and the benefits it provides to
applications using reactive streams of data, by centralizing user and application actions
into a unidirectional flow of data.

We then looked at how we can implement this pattern using Kotlin flows and the role
it plays when combined with other patterns, such as MVP and MVVM, with a focus on
MVVM. We can observe the downsides of the pattern on simple presentations, but its
benefits become more visible in applications with complicated user interfaces that take in
multiple user inputs, which can change the states of other inputs. In the chapter's exercise,
we looked at how we can transition an application with MVVM to MVI and how it fits
into Clean Architecture.

In the next chapter, we will take a step back and look at what we have implemented and
studied so far. We will see what we can improve and how we can take advantage of the
different layers of the application, as well as how we can swap dependencies for the various
configurations an application might have.

10
Putting It All

Together
In this chapter, we will analyze what we have done so far in the previous chapters and look
at different ways we can improve the layers of the application. Later, we will explore the
benefit of clean architecture when we integrate instrumented testing into the application,
where we will swap the data source dependencies with mock dependencies to ensure the
reliability of the tests.

In this chapter, we will cover the following topics:

•	 Inspecting module dependencies

•	 Instrumentation testing

By the end of the chapter, you will be able to identify and remove external dependencies
in the use case layer of the application to enforce the Common Closure Principle (CCP)
and know how to create instrumented tests on Android with mock data sources.

304 Putting It All Together

Technical requirements
The hardware and software requirements are as follows:

•	 Android Studio Arctic Fox 2020.3.1 Patch 3

The code files for this chapter can be found here: https://github.com/
PacktPublishing/Clean-Android-Architecture/tree/main/Chapter10.

Check out the following video to see the Code in Action: https://bit.ly/3sLr0HS

Inspecting module dependencies
In this section, we will analyze the dependencies used across the different modules in the
application created in the previous chapters.

Following Exercise 09.01 – Transitioning to MVI from Chapter 9, Implementing an MVI
Architecture, we now have a fully functioning application split into separate modules,
representing different layers. We can analyze the relationship between the different
modules by looking at the dependencies block in the build.gradle file in each
module and focusing in particular on the implementation(project(path:
"{module}")) lines. If we were to draw a diagram, it would look like the following:

Figure 10.1 – A module dependency diagram for exercise 09.01

Inspecting module dependencies 305

In the preceding figure, we can see that the :domain module, which is part of the domain
layer, is at the center, with the modules from the other layers having a dependency toward
it. The :app module is responsible for assembling all of the dependencies, and this means
that it will have a dependency on all the other modules. This means that we are in a good
clean architecture position because we want the entities and use cases to have minimal
dependencies on other components. If we continue analyzing the build.gradle files
for each module and include the external dependencies as well, we will see additional
dependencies on external libraries for each module:

Figure 10.2 – A module dependency diagram with external dependencies for exercise 09.01

306 Putting It All Together

In Figure 10.2, we can see some of the relevant external dependencies our modules
use. :data-remote uses dependencies toward Retrofit and OkHttp for networking,
the :data-local module has dependencies toward Room and DataStore, while the
presentation layer modules depend on things such as Compose, ViewModel, and the
Android framework. Dependencies that were used used across the entire project were
coroutines, flows, and Hilt.

Having dependencies on Hilt and coroutines might pose a problem for the :domain and
:data-repository modules. We want these two modules to be as stable as possible,
and having external dependencies will create problems every time we update the versions
for those libraries. We decided to use flows because of their threading benefits, the reactive
approach, and because they were developed as an extension to the Kotlin framework. They
might still pose a problem if we wanted to adapt our use cases for multiple platforms using
Kotlin Multiplatform. A solution for this would be to develop a reactive plugin that would
abstract the usage of flows and use this abstraction across the different modules. This
would allow us to swap different reactive libraries without changing the code inside the
module. While this solution would fix the problem, it comes with lots of baggage because
we would need to abstract both the streams of data and the operators that the project
requires from the flows framework, which would give us more code to maintain.

When it comes to the Hilt dependency, we can remove the references to Hilt from the
:domain and :data-repository modules and move the Hilt modules into :app.
Another solution would be to create new Gradle modules that would be responsible for
providing the necessary dependency. For example, a :domain-hilt module could
be created, where it would have a @Module annotated class that would provide all of
the dependencies that the :domain module would need to expose. This approach can
be used for other modules that we wish to export into applications that use different
dependency injection frameworks to avoid the dependency on Hilt in those projects.

Module dependencies will increase as applications develop new features and evolve; this
means we should take time and assess the dependencies used in a project. This will help us
identify potential issues and whether we can scale an application properly. We should also
account for external dependencies and analyze the influence they have over our project. In
the following section, we will look at an exercise on how to reduce the dependencies that
the domain and repository modules have on Hilt.

Inspecting module dependencies 307

Exercise 10.01 – Reduce dependencies
Modify Exercise 09.01 – transitioning to MVI in Chapter 9, Implementing an MVI
Architecture, so that the domain and data-repository modules will no longer depend
on Hilt and instead provide the dependencies from those modules inside the app module.

Before completing this exercise, you will need to do the following:

1.	 Remove Hilt from the domain module.
2.	 Remove the @Inject annotation from the

GetPostsWithUsersWithInteractionUseCase, GetPostUseCase,
GetUserUseCase, and UpdateInteractionUseCase classes.

3.	 Rename the AppModule class UseCaseModule and use @Provides to provide
dependencies to the preceding objects.

4.	 Remove Hilt from the data-repository module and delete the use of the
@Inject annotation.

5.	 Move RepositoryModule from the data-repository module into app
and use @Provides to provide the dependencies to PostRepository,
UserRepository, and InteractionRepository.

Follow these steps to complete the exercise:

1.	 In the build.gradle file of the domain module, remove the use of the kapt
and Hilt plugins:

plugins {

 id 'com.android.library'

 id 'kotlin-android'

}

2.	 In the same file, delete the usages of Hilt from the dependencies block:

dependencies {

 implementation coroutines.coroutinesAndroid

 testImplementation test.junit

 testImplementation test.coroutines

 testImplementation test.mockito

}

308 Putting It All Together

3.	 Delete the use of @Inject from
GetPostsWithUsersWithInteractionUseCase:

class GetPostsWithUsersWithInteractionUseCase(

 configuration: Configuration,

 private val postRepository: PostRepository,

 private val userRepository: UserRepository,

 private val interactionRepository:

 InteractionRepository

) : UseCase<GetPostsWithUsersWithInteractionUseCase.

 Request,

 GetPostsWithUsersWithInteractionUseCase.

 Response>(configuration) {

 …

}

4.	 Delete the use of @Inject from GetPostUseCase:

class GetPostUseCase(

 configuration: Configuration,

 private val postRepository: PostRepository

) : UseCase<GetPostUseCase.Request, GetPostUseCase.

 Response>(configuration) {

 …

}

5.	 Delete the use of @Inject from GetUserUseCase:

class GetUserUseCase(

 configuration: Configuration,

 private val userRepository: UserRepository

) : UseCase<GetUserUseCase.Request, GetUserUseCase.

 Response>(configuration) {

 …

}

6.	 Delete the use of @Inject from UpdateInteractionUseCase:

class UpdateInteractionUseCase(

 configuration: Configuration,

Inspecting module dependencies 309

 private val interactionRepository:

 InteractionRepository

) : UseCase<UpdateInteractionUseCase.Request,

 UpdateInteractionUseCase.Response>(configuration) {

 …

}

7.	 In the app module, rename AppModule UseCaseModule.
8.	 In the app module in the UseCaseModule class, provide a dependency to

GetPostsWithUsersWithInteractionUseCase:

@Module

@InstallIn(SingletonComponent::class)

class UseCaseModule {

 …

 @Provides

 fun

 provideGetPostsWithUsersWithInteractionUseCase(

 configuration: UseCase.Configuration,

 postRepository: PostRepository,

 userRepository: UserRepository,

 interactionRepository: InteractionRepository

): GetPostsWithUsersWithInteractionUseCase =

 GetPostsWithUsersWithInteractionUseCase(

 configuration,

 postRepository,

 userRepository,

 interactionRepository

)

}

Here, we need to use @Provides because we are no longer in the same module,
which means we should treat this as an external dependency, which needs the
@Provides annotation, similar to how we provided the Room and Retrofit
dependencies.

310 Putting It All Together

9.	 In the same class, provide a dependency to GetPostUseCase:

@Module

@InstallIn(SingletonComponent::class)

class UseCaseModule {

 …

 @Provides

 fun provideGetPostUseCase(

 configuration: UseCase.Configuration,

 postRepository: PostRepository

): GetPostUseCase = GetPostUseCase(

 configuration,

 postRepository

)

}

In this snippet, we follow the approach of the previous step.
10.	 In the same class, provide a dependency to GetUserUseCase:

@Module

@InstallIn(SingletonComponent::class)

class UseCaseModule {

 …

 @Provides

 fun provideGetUserUseCase(

 configuration: UseCase.Configuration,

 userRepository: UserRepository

): GetUserUseCase = GetUserUseCase(

 configuration,

 userRepository

)

}

In this snippet, we follow the approach of the previous step.
11.	 In the same class, provide a dependency to UpdateInteractionUseCase:

@Module

@InstallIn(SingletonComponent::class)

class UseCaseModule {

Inspecting module dependencies 311

 …

 @Provides

 fun provideUpdateInteractionUseCase(

 configuration: UseCase.Configuration,

 interactionRepository: InteractionRepository

): UpdateInteractionUseCase =

 UpdateInteractionUseCase(

 configuration,

 interactionRepository

)

}

In this snippet, we follow the approach of the previous step.
12.	 In the build.gradle file of the data-repository module, remove the use of

the kapt and Hilt plugins:

plugins {

 id 'com.android.library'

 id 'kotlin-android'

}

13.	 In the same file, delete the usages of Hilt from the dependencies block:

dependencies {

 implementation(project(path: ":domain"))

 implementation coroutines.coroutinesAndroid

 testImplementation test.junit

 testImplementation test.coroutines

 testImplementation test.mockito

}

14.	 Move the RepositoryModule class from the injection package in the data-
repository module into the injection package in the app module and make the
class not abstract.

15.	 Delete the use of @Inject from InteractionRepositoryImpl:

class InteractionRepositoryImpl(

 private val interactionDataSource:
LocalInteractionDataSource

312 Putting It All Together

) : InteractionRepository {

 …

}

16.	 Delete the use of @Inject from PostRepositoryImpl:

class PostRepositoryImpl(

 private val remotePostDataSource:

 RemotePostDataSource,

 private val localPostDataSource:

 LocalPostDataSource

) : PostRepository {

 …

}

17.	 Delete the use of @Inject from UserRepositoryImpl:

class UserRepositoryImpl(

 private val remoteUserDataSource:

 RemoteUserDataSource,

 private val localUserDataSource:

 LocalUserDataSource

) : UserRepository {

 …

}

18.	 In the RepositoryModule class, replace the bindPostRespository method
with a @Provides method:

@Module

@InstallIn(SingletonComponent::class)

abstract class RepositoryModule {

 @Provides

 fun providePostRepository(

 remotePostDataSource: RemotePostDataSource,

 localPostDataSource: LocalPostDataSource

): PostRepository = PostRepositoryImpl(

 remotePostDataSource,

 localPostDataSource

Inspecting module dependencies 313

)

 …

}

Here, we are no longer able to use the @Binds annotation because we removed the
@Inject annotation from the PostRepositoryImpl class, and because it is an
external dependency, we will need to use @Provides.

19.	 In the same file, replace the bindUserRepository method with a
@Provides method:

@Module

@InstallIn(SingletonComponent::class)

abstract class RepositoryModule {

 …

 @Provides

 fun provideUserRepository(

 remoteUserDataSource: RemoteUserDataSource,

 localUserDataSource: LocalUserDataSource

): UserRepository = UserRepositoryImpl(

 remoteUserDataSource,

 localUserDataSource

)

 …

}

20.	 In the same file, replace bindInteractionRepositorymethod with a @
Provides method:

@Module

@InstallIn(SingletonComponent::class)

abstract class RepositoryModule {

 …

 @Provides

 fun provideInteractionRepository(

 interactionDataSource:

 LocalInteractionDataSource

): InteractionRepository =

 InteractionRepositoryImpl(

314 Putting It All Together

 interactionDataSource

)

 …

}

If we run the application, we should see the same output that we got in Exercise 09.01 –
Transitioning to MVI:

Figure 10.3 – The output of exercise 10.01

The project is now in a state where the domain and data-repository modules no
longer depend on Hilt. This means that all the other modules that depend on these two
will be less exposed to potential issues caused by updates to Hilt. It also means that in
the future, if we want to change the dependency injection framework used across the
application, the domain and data-repository modules will remain unaffected by the
change. In the section that follows, we will look at how we can create instrumentation tests
with mock data to test that the modules are well integrated and that the data being passed
is processed appropriately.

Instrumentation testing 315

Instrumentation testing
In this section, we will look at how to perform instrumentation testing for an Android
application and how we can take advantage of dependency injection to inject either mock
data or add test-related logic without modifying the structure of an application's code.

Instrumentation testing is a set of tests that are run on an Android device or emulator
and is represented by the tests written in the androidTest directory. Just like other
parts of Android development, instrumentation testing evolved across the years to
improve the quality of test code and to provide the ability to create better tests and
assertions. Initially, testing was done using test classes such as ActivityTestCase,
ContentProviderTestCase, and ServiceTestCase, which were mainly used to
test individual components of an application in isolation. The addition of the Espresso
testing libraries allows us to easily test multiple activities as part of the journey a user
would undertake.

In order to add Espresso and the associated libraries into a project, the following will need
to be added to any module's build.gradle file:

dependencies {

 …

 androidTestImplementation "androidx.test:core:1.4.0"

 androidTestImplementation "androidx.test:runner:1.4.0 "

 androidTestImplementation "androidx.test:rules:1.4.0 "

 androidTestImplementation

 "androidx.test.ext:junit:1.1.3 "

 androidTestImplementation

 "androidx.test.espresso:espresso-core:3.4.0 "

 androidTestImplementation "androidx.test.espresso.

 idling:idling-concurrent:3.4.0 "

}

316 Putting It All Together

The following is an example of a test written using Espresso:

 @Test

 fun myTest(){

 ActivityScenario.launch(MainActivity::class.java).

 moveToState(Lifecycle.State.RESUMED)

 onView(withId(R.id.my_id))

 .perform(click())

 .check(isDisplayed())

 }

In the preceding example, we use the ActivityScenario launch method to start
MainActivity and transition Activity to the RESUMED state. We then use onView,
which requires ViewMatcher, and withId looks up View by its ID and returns
ViewMatcher holding that information. We then have the option to use perform,
which requires ViewAction. This is for when we want to interact with certain views.
We can also perform ViewAssertion using the check method. In this case, we are
checking whether a view is displayed.

Another useful addition to help with testing is the orchestrator. The orchestrator is useful
when we want to delete the data generated by the tests that might be kept in memory
or persisted on the device and that in turn might impact other tests and cause them to
malfunction. What the orchestrator does is uninstall the application before each executed
test so that every test will be on a freshly installed app. In order to add the orchestrator to
the application, you will need to add it to the module's build.gradle file:

android {

 …

 defaultConfig {

 …

 testInstrumentationRunnerArguments

 clearPackageData: 'true'

 testOptions {

 execution 'ANDROIDX_TEST_ORCHESTRATOR'

 }

 …

 }

}

Instrumentation testing 317

This will add the orchestrator configuration into the test execution and pass the
instruction to delete the application data after each test. To add the orchestrator
dependency into the project, the following is required:

dependencies {

 …

 androidTestUtil "androidx.test:orchestrator: 1.4.1"

}

Espresso also comes with many extensions, one of which is the concept of
IdlingResource. When both local tests (tests that are run on the development
machine) and instrumented tests are run, they are run on a dedicated set of threads for
testing. The Espresso testing library will monitor the main thread of the application, and
when it is idle, it will make the assertions required. If the application uses background
threads, Espresso will need a way to be informed by this. We can use IdlingResource
to indicate to Espresso wait for an action to complete before continuing its execution.
An example of IdlingResource is CountingIdlingResource, which will hold
a counter for each operation Espresso will need to wait for. The counter is incremented
before each long-running operation and then decremented after the operation is
completed. Before each test, IdlingResource will need to be registered and then
unregistered when the test finishes:

class MyClass(private val countingIdlingResource:

 CountingIdlingResource) {

 fun doOperation() {

 countingIdlingResource.increment()

 // Perform long running operation

 countingIdlingResource.decrement()

 }

}

In the preceding example, we have CountingIdlingResource being incremented
at the beginning of the doOperation method and decremented after the long operation
we intend to perform. To register and unregister IdlingResource, we can perform
the following:

 lateinit var countingIdlingResource :
CountingIdlingResource

318 Putting It All Together

 @Before

 fun setUp(){

 IdlingRegistry.getInstance().register

 (countingIdlingResource)

 }

 @After

 fun tearDown(){

 IdlingRegistry.getInstance().

 unregister(countingIdlingResource)

 }

In this example, we register IdlingResource in the setUp method, which is called
before each test because of the @Before annotation, and unregister it in the tearDown
method, which is called after each test because of the @After annotation.

Because IdlingResource is a part of Espresso but needs to be used when operations
inside the application's code are executed, we want to avoid using IdlingResource
alongside that code. A solution for this is to decorate the class that contains the operation
and then use dependency injection to inject the decorated dependency into the test. To
decorate the code, we will need to have an abstraction for the operation. An example of
this is as follows:

interface MyInterface {

 fun doOperation()

}

class MyClass : MyInterface {

 override fun doOperation() {

 // Implement long running operation

 }

}

Instrumentation testing 319

In the preceding example, we have created an interface that defines the doOperation
method, and then we implement the interface with the long-running operation into a
class. We can now create a class that will belong to the androidTest folder, which will
decorate the current implementation of the class:

class MyDecoratedClass(

 private val myInterface: MyInterface,

 private val countingIdlingResource:

 CountingIdlingResource

) : MyInterface {

 override fun doOperation() {

 countingIdlingResource.increment()

 myInterface.doOperation()

 countingIdlingResource.decrement()

 }

}

Here, we have another implementation of MyInterface, which will hold a reference
to the abstraction and CountingIdlingResource. When doOperation is called,
we will increment IdlingResource, call the operation, and then, when it's done,
decrement IdlingResource.

If we want to inject the new dependency into the test, we will need first to define a new
class that extends Application, which will hold the dependency graph containing
the test dependencies. If we are using Hilt, it already provides such a class in the form of
HiltTestApplication. If we want to integrate Hilt into the instrumented tests, we
will need the following dependencies to be added to the module's build.gradle file:

dependencies {

 androidTestImplementation "com.google.dagger:hilt-

 android-testing:2.40.5"

 kaptAndroidTest "com.google.dagger:hilt-android-

 compiler: 2.40.5"

}

320 Putting It All Together

To provide the HiltTestApplication class to the test, we will need to change the
instrumented test runner. An example of a new test runner will look like the following:

class MyTestRunner : AndroidJUnitRunner() {

 override fun newApplication(cl: ClassLoader?, name:

 String?, context: Context?): Application {

 return super.newApplication(cl,

 HiltTestApplication::class.java.name, context)

 }

}

In this example, we are extending from AndroidJUnitRunner, and in
the newApplication method, we invoke the super method, and we pass
HiltTestApplication as the name. This means that when the test is executed,
HiltTestApplication will be used instead of the Application class we defined in
our main code. We will now need to change the configuration in the module's build.
gradle file to use the preceding runner:

android {

 …

 defaultConfig {

 …

 testInstrumentationRunner "com.test.MyTestRunner"

 …

 }

 }

}

This allows the instrumented test to use the runner we have created. Let's now assume that
we have the following module, which will provide the initial dependency:

@Module

@InstallIn(SingletonComponent::class)

abstract class MyModule {

 @Binds

 abstract fun bindMyClass(myClass: MyClass): MyInterface

}

Instrumentation testing 321

Here, we are using a simple binding to connect an implementation to the abstraction. In
the androidTest folder, we can create a new module in which we replace this instance
with the decorated one:

@Module

@TestInstallIn(

 components = [SingletonComponent::class],

 replaces = [MyModule::class]

)

class MyDecoratedModule {

 @Provides

 fun provideIdlingResource() =

 CountingIdlingResource("my-idling-resource")

 @Provides

 fun provideMyDecoratedClass(countingIdlingResource:

 CountingIdlingResource) =

 MyDecoratedClass(MyClass(), countingIdlingResource)

}

In this example, we use the @TestInstallIn annotation, which will make the
dependencies in this module live as long as the test application and replace the
dependencies in the previous module. We can then provide dependencies for
IdlingResource and MyDecoratedClass, which will wrap MyClass and use
IdlingResource. If we want these changes to take effect in the tests, we will need the
following changes:

@HiltAndroidTest

class MyActivityTest {

 @get:Rule(order = 0)

 var hiltAndroidRule = HiltAndroidRule(this)

 @Inject

 lateinit var idlingResource: CountingIdlingResources

 @Before

322 Putting It All Together

 fun setUp(){

 hiltAndroidRule.inject()

 IdlingRegistry.getInstance().register

 (idlingResource)

 }

 @After

 fun tearDown(){

 IdlingRegistry.getInstance().unregister

 (idlingResource)

 }

}

In this example, we have used the @HiltAndroidTest annotation because
we want to inject CountingIdlingResources into the test. We then used
HiltAndroidTestRule to perform the injection. We also gave it the highest priority
in terms of the order of execution for test rules. Finally, we were able to register and
unregister CountingIdlingResources for each test in the class.

Jetpack Compose comes with its own testing libraries, which require the following
configuration to the module's build.gradle file:

dependencies {

 androidTestImplementation "androidx.compose.ui:ui-test-

 junit4:1.0.5"

 debugImplementation "androidx.compose.ui:ui-test-

 manifest:1.0.5"

}

To write tests for Jetpack Compose components, we will need to define a Compose test
rule using createComposeRule when we want to test individual composable methods,
or createAndroidComposeRule if we want to test the Compose content of an entire
activity. An example would look like the following:

class MyTest {

 @get:Rule

 var composeTestRule = createAndroidComposeRule

Instrumentation testing 323

 (MyActivity::class.java)

}

In the preceding example, we have defined a test rule that will be responsible for testing
the Compose content inside MyActivity. If we want the test to interact with the user
interface or assert that it displays the correct information, we have the following structure:

 @Test

 fun testDisplayList() {

 composeTestRule.onNode()

 .assertIsDisplayed()

 .performClick()

 }

In this example we use the onNode method to locate a particular element, such as Text
or Button. We then have the assertIsDisplayed method, which is used to check
whether the node is displayed. Finally, we have the performClick method, which will
click on the element. Jetpack Compose uses its own IdlingResource type, which can
be registered in the Compose test rule, similar to the following example:

 lateinit var idlingResource: IdlingResource

 @Before

 fun setUp() {

 composeTestRule.registerIdlingResource

 (idlingResource)

 }

 @After

 fun tearDown() {

 composeTestRule.unregisterIdlingResource

 (idlingResource)

 }

324 Putting It All Together

From a clean architecture perspective, we should strive to make our application's code
as testable as possible. This applies to both local tests such as unit tests and instrumented
tests. We want to be able to ensure that the tests are reliable; this usually means that we
will need to remove the dependency on network calls, which means we will need to
provide a way to inject mock data into the application without modifying the application's
code. We also need to be able to either inject IdlingResources into the application or
use decorated dependencies to verify that the data inserted by the user is the correct data
received in the data layer. This also involves the ability to decorate these dependencies to
add extra logic without modifying the application's code. In the following section, we will
look at an exercise in which we will inject various dependencies containing testing logic
into the application and assess the difficulty it takes to introduce them.

Exercise 10.02 – Instrumented testing
Add one instrumented test to Exercise 10.01 – Reduce dependencies, which will assert that
the following data is displayed onscreen:

Figure 10.4 – The expected output of exercise 10.02

Instrumentation testing 325

To achieve this, you will need to create a new implementation of
RemotePostDataSource, which will return a list of four posts; two posts will belong
to one user and the other two will belong to another user. The same thing will need
to be done for RemoteUserDataSource, which will return the two users. These
implementations will need to be injected into the test. To ensure that the test will wait
for the background work to complete, you will need to decorate each repository with
IdlingResource, which will also need to be injected into the test.

Before completing this exercise, you will need to do the following:

1.	 Integrate the testing libraries into the app module.
2.	 Create PostAppTestRunner, which will be used to provide

HiltTestApplication to the Android instrumentation test runner.
3.	 Create a ComposeCountingIdlingResource class, which will wrap

an Espresso CountingIndlingResource and implement the Compose
IdlingResource.

4.	 Create MockRemotePostDataSource and MockRemoteUserDataSource,
which will be responsible for returning the users and posts in presented in Figure 10.4.

5.	 Create IdlingInteractionRepository, IdlingUserRepository, and
IdlingPostRespository, which will decorate InteractionRepository,
UserRepository, and PostRepository, and use the
ComposeCountingIdlingResource, which will be incremented when new
data is loaded and decremented when data loading is done.

6.	 Create IdlingRepositoryModule and MockRemoteDataSourceModule,
which will replace RepositoryModule and RemoteDataSourceModule
respectively in the tests.

7.	 Create MainActivityTest, which will have one test, and use
createAndroidComposeRule to assert that the list of mock data is displayed.

Follow these steps to complete the exercise:

1.	 In the top-level build.gradle file, add the following library versions:

buildscript {

 ext {

 …

 versions = [

 …

326 Putting It All Together

 androidTestCore : "1.4.0",

 androidTestJunit : "1.1.3",

 orchestrator : "1.4.1"

]

 …

}

2.	 In the same file, make sure that the following androidTest dependencies
are added:

buildscript {

 ext {

 …

 androidTest = [

 junit : "androidx.test.ext

 :junit:${versions.espressoJunit}",

 espressoCore : "androidx.test.

 espresso:espresso-core:${versions.

 espressoCore}",

 idlingResource : "androidx.test.

 espresso:espresso-idling-resource

 :${versions.espressoCore}",

 composeUiTestJunit: "androidx.compose.

 ui:ui-test-junit4:$

 {versions.compose}",

 composeManifest : "androidx.compose

 .ui:ui-test-manifest:$

 {versions.compose}",

 hilt : "com.google.

 dagger:hilt-android-testing:$

 {versions.hilt}",

 hiltCompiler : "com.google.

 dagger:hilt-android-compiler:$

 {versions.hilt}",

 core : "androidx.test:

 core:${versions.androidTestCore}",

 runner : "androidx.test:

Instrumentation testing 327

 runner:$

 {versions.androidTestCore}",

 rules : "androidx.test:

 rules:${versions.androidTestCore}",

 orchestrator : "androidx.test:

 orchestrator:$

 {versions.orchestrator}"

]

 }

 …

}

Here, we are defining the mappings for all the testing libraries we will be using so
that they will be available across multiple modules.

3.	 In the build.gradle file of the app module, add the required test dependencies:

dependencies{

 …

 androidTestImplementation androidTest.junit

 androidTestImplementation androidTest.espressoCore

 androidTestImplementation

 androidTest.idlingResource

 androidTestImplementation androidTest.core

 androidTestImplementation androidTest.rules

 androidTestImplementation androidTest.runner

 androidTestImplementation androidTest.hilt

 kaptAndroidTest androidTest.hiltCompiler

 androidTestImplementation

 androidTest.composeUiTestJunit

 debugImplementation androidTest.composeManifest

 androidTestUtil androidTest.orchestrator

}

4.	 In the androidTest folder of the app module, create the PostAppTestRunner
class inside the java/{package-name} folder:

class PostAppTestRunner : AndroidJUnitRunner() {

328 Putting It All Together

 override fun newApplication(cl: ClassLoader?,

 name: String?, context: Context?): Application {

 return super.newApplication(cl,

 HiltTestApplication::class.java.name,

 context)

 }

}

5.	 In the build.gradle file of the app module, set the following test
configuration. Make sure to replace {package-name} with the package that the
PostAppTestRunner is in:

android {

 …

 defaultConfig {

 …

 testInstrumentationRunner "{package-name}.

 PostAppTestRunner"

 testInstrumentationRunnerArguments

 clearPackageData: 'true'

 testOptions {

 execution 'ANDROIDX_TEST_ORCHESTRATOR'

 }

 }

}

6.	 In the androidTest folder of the app module, create the following packages
inside the java/{package-name} folder – idling, injection, remote,
repository, and test.

7.	 Inside the idling package, create a new class called
ComposeCountingIdlingResource:

class ComposeCountingIdlingResource(name: String) :

 IdlingResource {

 private val countingIdlingResource =

 CountingIdlingResource(name)

 override val isIdleNow: Boolean

Instrumentation testing 329

 get() = countingIdlingResource.isIdleNow

 fun increment() = countingIdlingResource.

 increment()

 fun decrement() = countingIdlingResource.

 decrement()

}

Here, we have used the CountingIdlingResource class from Espresso to
perform the logic for incrementing, decrementing, and providing its current idling
state through the isIdleNow method, which is used by Jetpack Compose.

8.	 In the same package, create a file called IdlingUtils with the following method:

fun <T> Flow<T>.attachIdling(

 countingIdlingResource:

 ComposeCountingIdlingResource

): Flow<T> {

 return onStart {

 countingIdlingResource.increment()

 }.onEach {

 countingIdlingResource.decrement()

 }

}

This is an extension function that we can use to increment IdlingResource
before Flow is collected and decrement it when the first value of Flow is
being emitted.

9.	 In the repository package, create a class called
IdlingInteractionRepository:

class IdlingInteractionRepository(

 private val interactionRepository:
InteractionRepository,

 private val countingIdlingResource:
ComposeCountingIdlingResource

) : InteractionRepository {

 override fun getInteraction(): Flow<Interaction> {

330 Putting It All Together

 return interactionRepository.getInteraction()

 .attachIdling(countingIdlingResource)

 }

 override fun saveInteraction(interaction:

 Interaction): Flow<Interaction> {

 return interactionRepository.

 saveInteraction(interaction)

 .attachIdling(countingIdlingResource)

 }

}

This class has a reference to the ComposeCountingIdlingResource object
and the attachIdling method created previously to increment when the data is
loaded or saved and to decrement when it's done performing these operations.

10.	 In the same package, create a class called IdlingPostRepository:

class IdlingPostRepository(

 private val postRepository: PostRepository,

 private val countingIdlingResource:

 ComposeCountingIdlingResource

) : PostRepository {

 override fun getPosts(): Flow<List<Post>> =

 postRepository.getPosts().attachIdling

 (countingIdlingResource)

 override fun getPost(id: Long): Flow<Post> =

 postRepository.getPost(id).

 attachIdling(countingIdlingResource)

}

In this snippet, we follow the approach of the previous step.
11.	 In the same package, create a class called IdlingUserRepository:

class IdlingUserRepository(

 private val userRepository: UserRepository,

 private val countingIdlingResource:

Instrumentation testing 331

 ComposeCountingIdlingResource

) : UserRepository {

 override fun getUsers(): Flow<List<User>> =

 userRepository.getUsers()

 .attachIdling(countingIdlingResource)

 override fun getUser(id: Long): Flow<User> =

 userRepository.getUser(id)

 .attachIdling(countingIdlingResource)

}

In this snippet, we follow the approach of the previous step.
12.	 In the injection package, create the IdlingRepositoryModule class:

@Module

@TestInstallIn(

 components = [SingletonComponent::class],

 replaces = [RepositoryModule::class]

)

class IdlingRepositoryModule {

}

13.	 In the IdlingRepositoryModule class, provide a dependency for
ComposeCountingIdlingResource, which will be a single instance across all
the repositories:

@Module

@TestInstallIn(

 components = [SingletonComponent::class],

 replaces = [RepositoryModule::class]

)

class IdlingRepositoryModule {

 @Singleton

 @Provides

 fun provideIdlingResource():

 ComposeCountingIdlingResource =

332 Putting It All Together

 ComposeCountingIdlingResource

 ("repository-idling")

}

In this snippet, we are providing a single instance of
ComposeCountingIdlingResource so that when multiple repositories load
data at the same time, the same counter will be used for all of them.

14.	 In the same file, provide a dependency for IdlingPostRepository:

@Module

@TestInstallIn(

 components = [SingletonComponent::class],

 replaces = [RepositoryModule::class]

)

class IdlingRepositoryModule {

 …

 @Provides

 fun providePostRepository(

 remotePostDataSource: RemotePostDataSource,

 localPostDataSource: LocalPostDataSource,

 countingIdlingResource:

 ComposeCountingIdlingResource

): PostRepository = IdlingPostRepository(

 PostRepositoryImpl(

 remotePostDataSource,

 localPostDataSource

),

 countingIdlingResource

)

}

In this snippet, we are providing an instance of the IdlingPostRepository,
which will wrap an instance of PostRepositoryImpl and have a reference to the
ComposeCountingIdlingResource instance defined previously.

15.	 In the same file, provide a dependency for IdlingUserRepository:

@Module

@TestInstallIn(

Instrumentation testing 333

 components = [SingletonComponent::class],

 replaces = [RepositoryModule::class]

)

class IdlingRepositoryModule {

 …

 @Provides

 fun provideUserRepository(

 remoteUserDataSource: RemoteUserDataSource,

 localUserDataSource: LocalUserDataSource,

 countingIdlingResource:

 ComposeCountingIdlingResource

): UserRepository = IdlingUserRepository(

 UserRepositoryImpl(

 remoteUserDataSource,

 localUserDataSource

),

 countingIdlingResource

)

}

In this snippet, we are providing an instance of IdlingUserRepository, which
will wrap an instance of UserRepositoryImpl and have a reference to the
ComposeCountingIdlingResource instance defined previously.

16.	 In the same file, provide a dependency for IdlingInteractionRepository:

@Module

@TestInstallIn(

 components = [SingletonComponent::class],

 replaces = [RepositoryModule::class]

)

class IdlingRepositoryModule {

 …

 @Provides

 fun provideInteractionRepository(

 interactionDataSource:

 LocalInteractionDataSource,

 countingIdlingResource:

334 Putting It All Together

 ComposeCountingIdlingResource

): InteractionRepository =

 IdlingInteractionRepository(

 InteractionRepositoryImpl(

 interactionDataSource

),

 countingIdlingResource

)

}

In this snippet, we are providing an instance of
IdlingInteractionRepository, which will wrap an instance
of InteractionRepositoryImpl and have a reference to the
ComposeCountingIdlingResource instance defined previously.

17.	 In the remote package, create a class called MockRemoteUserDataSource and
create a list of User objects representing the test data:

class MockRemoteUserDataSource @Inject constructor() :

 RemoteUserDataSource {

 private val users = listOf(

 User(

 id = 1L,

 name = "name1",

 username = "username1",

 email = "email1"

),

 User(

 id = 2L,

 name = "name2",

 username = "username2",

 email = "email2"

)

)

 override fun getUsers(): Flow<List<User>> = flowOf

Instrumentation testing 335

 (users)

 override fun getUser(id: Long): Flow<User> =

 flowOf(users[0])

}

Here, we have created a list in which we return two users and put it into Flow for
the getUsers method.

18.	 In the same package, create a class called MockRemotePostDataSource and
create a list of Post objects representing the test data:

class MockRemotePostDataSource @Inject constructor() :

 RemotePostDataSource {

 private val posts = listOf(

 Post(

 id = 1L,

 userId = 1L,

 title = "title1",

 body = "body1"

),

 Post(

 id = 2L,

 userId = 1L,

 title = "title2",

 body = "body2"

),

 Post(

 id = 3L,

 userId = 2L,

 title = "title3",

 body = "body3"

),

 Post(

 id = 4L,

 userId = 2L,

 title = "title4",

336 Putting It All Together

 body = "body4"

)

)

 override fun getPosts(): Flow<List<Post>> =

 flowOf(posts)

 override fun getPost(id: Long): Flow<Post> =

 flowOf(posts[0])

}

Similar to what we did with the users, we create a list of posts and connect the first
two posts to the first user and the last two posts to the second user.

19.	 In the injection package, create a class called
MockRemoteDataSourceModule, which will be responsible for binding the
previous two implementations to the abstractions:

@Module

@TestInstallIn(

 components = [SingletonComponent::class],

 replaces = [RemoteDataSourceModule::class]

)

abstract class MockRemoteDataSourceModule {

 @Binds

 abstract fun bindPostDataSource(

 postDataSourceImpl: MockRemotePostDataSource):

 RemotePostDataSource

 @Binds

 abstract fun bindUserDataSource(userDataSourceImpl

 : MockRemoteUserDataSource):

 RemoteUserDataSource

}

Instrumentation testing 337

20.	 In the test package, create a class called MainActivityTest:

@HiltAndroidTest

class MainActivityTest {

 @get:Rule(order = 0)

 var hiltAndroidRule = HiltAndroidRule(this)

 @get:Rule(order = 1)

 var composeTestRule = createAndroidComposeRule

 (MainActivity::class.java)

 @Inject

 lateinit var idlingResource:

 ComposeCountingIdlingResource

 @Before

 fun setUp() {

 hiltAndroidRule.inject()

 composeTestRule.

 registerIdlingResource(idlingResource)

 }

 @After

 fun tearDown() {

 composeTestRule.unregisterIdlingResource

 (idlingResource)

 }

}

Here, we are initializing our test rules, which are for Hilt and Compose, in that exact
order. Then, we inject ComposeCountingIdlingResource into the test class
so that we can register it into the Compose test rule.

338 Putting It All Together

21.	 In the MainActivityTest class, add a test that will assert that the required data
is displayed on the screen:

@HiltAndroidTest

class MainActivityTest {

 …

 @Test

 fun testDisplayList() {

 composeTestRule.onNodeWithText("Total click

 count: 0")

 .assertIsDisplayed()

 composeTestRule.onAllNodesWithText("Author:

 name1")

 .assertCountEquals(2)

 composeTestRule.onAllNodesWithText("Author:

 name2")

 .assertCountEquals(2)

 composeTestRule.onNodeWithText("Title:

 title1")

 .assertIsDisplayed()

 composeTestRule.onNodeWithText("Title:

 title2")

 .assertIsDisplayed()

 composeTestRule.onNodeWithText("Title:

 title3")

 .assertIsDisplayed()

 composeTestRule.onNodeWithText("Title:

 title4")

 .assertIsDisplayed()

 }

}

Here, we have added a test that asserts that the header text is displayed, the two
users are displayed for each of their posts, and that each post is displayed.

Summary 339

If we run the test, we should see the following output:

Figure 10.5 – The test output for exercise 10.02

As part of this exercise, we were able to provide mock data to the application without
changing any of its existing code by changing the remote data sources and building
upon existing functionality, by adding IdlingResources to our repositories. Both
techniques were possible using dependency injection, and because of abstractions, we
introduced different layers of the application when we performed dependency inversion.
This makes the application's code testable and provides us with the opportunity to test
different scenarios and create various types of tests to ensure the integration of different
components.

Summary
In this chapter, we analyzed the exercises we've done in previous chapters and found
potential issues with the dependencies that the modules of the application have.
We looked at potential solutions for these problems. Then, we looked at a practical
application of clean architecture, which is the implementation of instrumented tests, and
how we can change the data sources of an application to ensure testing reliability. We
looked at how we can implement instrumented tests using Jetpack Compose and Hilt
to provide dependency injection, and then we applied them in an exercise in which we
changed the dependencies for the tests. This serves as just one example of the benefits
of clean architecture. Other benefits will come in situations where multiple flavors are
used to publish similar applications and want to inject different implementations or
configurations for each application we want to build. Another benefit comes when dealing
with multiple platforms (such as Android and iOS), where we can define entities, use cases
and repositories agnostically of the platforms using cross platform frameworks and then
inject the implementations for retrieving and persisting the data for each platform.

340 Putting It All Together

In Chapter 9, Implementing an MVI Architecture, we showed how we can change an
application's presentation layer without impacting other layers. In a clean application,
this should be possible for the data layer as well. We saw how libraries have changed and
evolved over time. When networking libraries change, we should be able to transition
to new libraries without causing issues in the other modules of an application. The same
principle can be applied to local storage. We should be able to change from Room to other
ways of persisting data locally. A good rule of thumb for how modules should be created
is to view each module as a library that can be released and imagine yourself as the end
user. You should have now a good idea of how clean architecture is supposed to work, the
problems it is trying to solve, and how you can apply it to an Android application.

Index

A
Acyclic Dependencies Principle 16
Android

architecture components 23, 24
coroutines 24
dependency injection 23
evolution, exploring 18
flows 24
fragments 18, 19
functional paradigms 22
Humble Objects 21
Jetpack Compose 25-31
Kotlin adoption 22
networking libraries 21

Android application
architecture 144-148
data, presenting in 234-239

Android application, architecture layers
data layer 145
domain layer 145
presentation layer 145

Android application, components
activities 5
broadcast receivers 5
content providers 5
services 5

Android modules 146
Android Studio 158
architecture patterns 21

C
clean architecture

about 31-40
Entity Layer 32
Frameworks and Drivers Layer 32
Interface Adapter Layer 32
principles 144
Use Case Layer 32

Common Closure Principle (CCP) 16
Common Reuse Principle (CRP) 16
component cohesion principles

about 15
Common Closure Principle (CCP) 16
Common Reuse Principle (CRP) 16
Reuse/Release Equivalence

Principle (REP) 16
component coupling principles

about 16
Acyclic Dependencies Principle 16
Stable Abstractions Principle 17
Stable Dependencies Principle 17

342 Index

constructor injection 120, 122
context leaks 89
coroutines 24
create, read, update, and delete

(CRUD) operations 12, 69

D
Dagger 2

using, to manage dependencies 123-130
data

persisting, with DataStore library 78-82
presenting, in Android

applications 234-239
presenting, in multiple modules 254-274
presenting with MVVM 239, 240

data access object (DAO) 71
data layer

about 33
creating 178-180

data persistence
Room library, using 69-76

DataStore library
about 77, 78
using 77, 78
using, to persist data 78-82

data transport objects 156
declarative way 104
dependencies

managing, with Dagger 2 123-130
managing, with Hilt 130-140

dependency injection (DI)
about 23, 118-123
class diagram 122

Dependency Inversion Principle 15
domain layer

building 158-175
creating 148-158

E
Extensible Markup Language (XML) 58

F
field injection 123
Firebase Test Lab 235
flows 24
fragments 18, 19
framework layer 145
functional paradigms 22

G
Gradle build system 20, 21
Groovy 20

H
Hilt

using, to manage dependencies 130-140
Humble Object 21
Humble Object pattern 235
HyperText Transfer Protocol (HTTP) 58

I
imperative way 104
input/output (I/O) 42
instrumentation testing

about 315
performing 315-338

Intent 276
interface adapter layer 145
interface injection 123
Interface Segregation Principle 15

Index 343

J
JavaScript Object Notation

(JSON) format 58
Java Specification Requests (JSR) 330 123
Jetpack Compose

about 25-31
side effects, reference link 286
used, for navigating 110-114
using, to build UIs 102-110

K
Kotlin Coroutines

about 42-48
using 48-54

Kotlin Flows
about 42-55, 151
entities, considering 54
MVI, implementing 280-286
using 56-58

Kotlin programming
adopting, in Android 22

L
legacy app

architecture 4-10
issues, analyzing 11-13

lifecycle-aware components
analyzing 86-97
analyzing, with LiveData 97-101
analyzing, with ViewModel 97-101

Liskov Substitution Principle 15
LiveData

used, for analyzing
lifecycle-aware components 97-101

local data sources
building 214-230
integrating 214-217

M
mocks 123
Model 276
Model-View-Controller (MVC) 234
Model-View-Intent (MVI)

architecture 276-280
implementing, with Kotlin

flows 280-286
transitioning to 287-301

Model View Presenter (MVP) 21
Model-View-ViewModel (MVVM)

about 97
data, presenting with 239, 240
implementing 241-253
Interface Adapter layer 240
Use Case layer 240

module dependencies
inspecting 304-306
reducing 307-314

multi-module data presentation 253-274

N
networking

OkHttp, using 58-63
Retrofit, using 58-63

networking libraries 21

O
object-oriented programming (OOP) 15
OkHttp

using 63-69

344 Index

using, for networking 58-63
Open-Closed Principle 14

P
plain old Java objects (POJOs) 58
presentation layer 33
primary key (PK) 70

R
remote data sources

building 198-213
using 198-200

repositories
creating 181-196

Retrofit
using 63-69
using, for networking 58-63

Reuse/Release Equivalence
Principle (REP) 16

Robolectric 235
Room 24
Room library

using, for data persistence 69-76

S
service locator library 23
setter injection 123
Single Responsibility Principle 14
software design principles

about 14
component cohesion principles 15, 16
component coupling principles 16-18
SOLID principles 14, 15

SOLID principles
about 14
Dependency Inversion Principle 15
Interface Segregation Principle 15
Liskov Substitution Principle 15
Open-Closed Principle 14
Single Responsibility Principle 14

Stable Abstractions Principle 17
Stable Dependencies Principle 17
state hoisting 106
Structured Query Language (SQL) 69

U
UI layer 145
Uniform Resource Locator (URL) 59
user experience (UX) 42
user interface (UI)

about 8, 42
building, with Jetpack

Compose 102-110

V
View 276
ViewHolder 103
ViewModel

used, for analyzing
lifecycle-aware components 97-101

Z
zone of pain 17
zone of uselessness 17

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

348 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Android UI Development with Jetpack Compose.

Thomas Künneth

ISBN: 978-1-80181-216-0

•	 Gain a solid understanding of the core concepts of Jetpack Compose

•	 Develop beautiful, neat, and immersive UI elements that are user friendly, reliable,
and performant

•	 Build a complete app using Jetpack Compose

•	 Add Jetpack Compose to your existing Android applications

•	 Test and debug apps that use Jetpack Compose

Other Books You May Enjoy 349

Kickstart Modern Android Development with Jetpack and Kotlin

Catalin Ghita

ISBN: 	 978-1-80181-107-1

•	 Integrate popular Jetpack libraries such as Compose, ViewModel, Hilt, and
Navigation into real Android apps with Kotlin

•	 Apply modern app architecture concepts such as MVVM, dependency injection,
and clean architecture

•	 Explore Android libraries such as Retrofit, Coroutines, and Flow

•	 Integrate Compose with the rest of the Jetpack libraries or other popular
Android libraries

•	 Work with other Jetpack libraries such as Paging and Roo

350

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

 351

Hi!

I am Alexandru Dumbravan, author of Clean Android Architecture: Take a layered
approach to writing a clean, testable, and decoupled Android applications. I really hope you
enjoyed reading this book and found it useful for building Android applications that are
easier to test, scale and maintain, and gained an understanding on what roles some of the
most popular libraries and frameworks play in achieving this.

It would really help us (and other potential readers!) if you could leave a review on
Amazon sharing your thoughts on how to build a clean Android application.

Go to the link below or scan the QR code to leave your review:

https://packt.link/r/180323458X

Your review will help us to understand what's worked well in this book, and what could be
improved upon for future editions, so it really is appreciated.

Best wishes,

	Clean Android Architecture
	Title
	Copyright
	Contributors
	About the reviewers
	Contents
	Preface
	Part 1. Introduction
	Chapter 1: Getting Started with Clean Architecture
	Technical requirements
	The architecture of a legacy app
	Legacy analysis

	Software design principles
	SOLID principles
	Component cohesion principles
	Component coupling principles

	Exploring the evolution of Android
	Fragments
	The Gradle build system
	Networking
	Humble objects
	Functional paradigms
	Kotlin adoption
	Dependency injection
	Android architecture components
	Coroutines and flows
	Jetpack Compose

	Enter clean architecture
	Summary

	Chapter 2: Deep Diving into Data Sources
	Technical requirements
	Understanding Kotlin coroutines and Flows
	Kotlin coroutines
	Exercise 02.01 – Using Kotlin coroutines
	Kotlin Flows
	Exercise 02.02 – Using Kotlin Flows

	Using OkHttp and Retrofit for networking
	Exercise 02.03 – Using OkHttp and Retrofit

	Using the Room library for data persistence
	Exercise 02.04 – Using Room to persist data

	Understanding and using the DataStore library
	Exercise 02.05 – Using DataStore to persist data

	Summary

	Chapter 3: Understanding Data Presentation on Android
	Technical requirements
	Analyzing lifecycle-aware components
	Exercise 3.1 – Using ViewModel and LiveData

	Using Jetpack Compose to build UIs
	Exercise 3.2 – Navigating using Jetpack Compose

	Summary

	Chapter 4: Managing Dependencies in Android Applications
	Technical requirements
	Introduction to DI
	Using Dagger 2 to manage dependencies
	Using Hilt to manage dependencies
	Exercise 04.01 – using Hilt to manage dependencies

	Summary

	Part 2. Domain and Data Layers
	Chapter 5: Building the Domain of an Android Application
	Technical requirements
	Introducing the app's architecture
	Creating the domain layer
	Exercise 05.01 – Building a domain layer

	Summary

	Chapter 6: Assembling
a Repository
	Technical requirements
	Creating the data layer
	Creating repositories
	Exercise 06.01 – Creating repositories

	Summary

	Chapter 7: Building Data Sources
	Technical requirements
	Building and using remote data sources
	Exercise 07.01 – Building a remote data source

	Building and integrating local data sources
	Exercise 07.02 – Building a local data source

	Summary

	Part 3. Presentation Layer
	Chapter 8: Implementing an MVVM Architecture
	Technical requirements
	Presenting data in Android applications
	Presenting data with MVVM
	Exercise 08.01 – Implementing MVVM

	Presenting data in multiple modules
	Exercise 08.02 – Multi-module data presentation

	Summary

	Chapter 9: Implementing an MVI Architecture
	Technical requirements
	Introducing MVI
	Implementing MVI with Kotlin flows
	Exercise 09.01 – Transitioning to MVI

	Summary

	Chapter 10: Putting It All Together
	Technical requirements
	Inspecting module dependencies
	Exercise 10.01 – Reduce dependencies

	Instrumentation testing
	Exercise 10.02 – Instrumented testing

	Summary

	Index
	Other Books You May Enjoy

